
Towards a Formal Model of Algorithms

Declan Thompson

Fourth Year Talk, 22/23 May 2020

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 1 / 31

Philosophy of Computer Science

Ethical issues
AI
Big data
Privacy

Analysis of software development
Verification and correctness
Programming language semantics
Ontology of programs

Artifacts in computer science
Implementation
Software vs. hardware

Foundations of theoretical computer science
What is computable in theory? In practice?
What is computation?
What are algorithms?

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 2 / 31

What would an adequate formal characterisation of algorithm look like?

Research focus
How should we understand claims about algorithms?
What do we expect of a formal model of algorithms?

Computer scientists say things like:
Program X implements Prim’s algorithm.
MergeSort and QuickSort are different sorting algorithms.
The Euclidean algorithm is correct for finding the greatest
common divisor of two positive integers.
The Gale-Shapley algorithm runs in quadratic time.
Shor’s algorithm is a quantum algorithm.

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 3 / 31

Outline

1 What are algorithms?
Running Example: Prim’s Algorithm
Two approaches to algorithms

2 Extant formal accounts of algorithm
The Traditional Approach
Algorithmic Realism

3 A New Direction
Trace Sets
Recovering Computability Theory

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 4 / 31

Outline

1 What are algorithms?
Running Example: Prim’s Algorithm
Two approaches to algorithms

2 Extant formal accounts of algorithm
The Traditional Approach
Algorithmic Realism

3 A New Direction
Trace Sets
Recovering Computability Theory

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 4 / 31

Problem: Minimum Spanning Tree

Task (MST)
Given: A weighted connected simple graph

G = (V ,E ,w)
Return: A spanning tree G1 = (V1,E1,w) of G

which minimises∑
e∈E1

w(e)

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 5 / 31

Solution: Prim’s Algorithm

Prim(G , v):

1 Intialize V1 = {v}, E1 = ∅, and set
G1 = (V1,E1).

2 While there is an edge that connects a
vertex in V1 to a vertex not in V1 do

a Find an edge e = {u, v ′} with smallest
weight w(e) such that u ∈ V1 and
v ′ /∈ V1.

b Set V1 = V1 ∪ {v ′}, E1 = E1 ∪ {e}, and
G1 = (V1,E1).

3 Output G1 = (V1,E1).

(Khoussainov and Khoussainova 2012, p. 172)

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 6 / 31

Claims about Prim’s Algorithm

Theorem 17.3 If G is a connected weighted graph then
the Prim(G, v)-algorithm produces a minimum spanning
tree for G.

(Khoussainov and Khoussainova 2012, p. 173)
[I]f we use a Fibonacci heap to implement the
min-priority queue Q, the running time of Prim’s
algorithm improves to O(E + V lg V).

(Cormen et al. 2009, p. 636)
Kruskal’s algorithm is generally slower than Prim’s
algorithm

(Sedgewick and Wayne 2011, p. 625)

What is Prim’s algorithm?

An abstract object?
A mathematical
object?
A syntactic object?
Something else?

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 7 / 31

What is an algorithm?

Editor:
We are making this communication
intentionally short to leave as much
room as possible for the answers.

1 Please define “Algorithm.”
2 Please define “Formula.”
3 Please state the difference.

(Wangsness and Franklin 1966, p. 243)

Since Turing, Kleene, Markov and others, we have several
precise definitions which have proved to be equivalent. In
each case a distinguished sufficiently powerful algorithmic
language (= programming language) is specified and an
algorithm is defined to be any program written in this
language (Turing Machines, µ-recursive functions, normal
Markov algorithms, and so on) terminating when executed.

(Huber 1966, p. 653)

A concept like “abstract algorithm” without reference to any
algorithmic language does not exist. In order to specify an
algorithm one has to give the specifications in some
algorithmic language.

(Huber 1966, p. 654)

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 8 / 31

What is an algorithm?

Editor:
We are making this communication
intentionally short to leave as much
room as possible for the answers.

1 Please define “Algorithm.”
2 Please define “Formula.”
3 Please state the difference.

(Wangsness and Franklin 1966, p. 243)

Since Turing, Kleene, Markov and others, we have several
precise definitions which have proved to be equivalent. In
each case a distinguished sufficiently powerful algorithmic
language (= programming language) is specified and an
algorithm is defined to be any program written in this
language (Turing Machines, µ-recursive functions, normal
Markov algorithms, and so on) terminating when executed.

(Huber 1966, p. 653)

A concept like “abstract algorithm” without reference to any
algorithmic language does not exist. In order to specify an
algorithm one has to give the specifications in some
algorithmic language.

(Huber 1966, p. 654)

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 8 / 31

What is an algorithm?

Editor:
We are making this communication
intentionally short to leave as much
room as possible for the answers.

1 Please define “Algorithm.”
2 Please define “Formula.”
3 Please state the difference.

(Wangsness and Franklin 1966, p. 243)

Since Turing, Kleene, Markov and others, we have several
precise definitions which have proved to be equivalent. In
each case a distinguished sufficiently powerful algorithmic
language (= programming language) is specified and an
algorithm is defined to be any program written in this
language (Turing Machines, µ-recursive functions, normal
Markov algorithms, and so on) terminating when executed.

(Huber 1966, p. 653)

A concept like “abstract algorithm” without reference to any
algorithmic language does not exist. In order to specify an
algorithm one has to give the specifications in some
algorithmic language.

(Huber 1966, p. 654)

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 8 / 31

What is an algorithm?

Editor:
We are making this communication
intentionally short to leave as much
room as possible for the answers.

1 Please define “Algorithm.”
2 Please define “Formula.”
3 Please state the difference.

(Wangsness and Franklin 1966, p. 243)

To me the word algorithm denotes an abstract method for
computing some function, while a program is an embodiment
of a computational method in some programming language.
I can write several different programs for the same algorithm
(e.g., in ALGOL 60 and in PL/I, assuming these languages
are given an unambiguous interpretation).

Of course if I am pinned down and asked to explain more
precisely what I mean by these remarks, I am forced to admit
that I don’t know any way to define any particular algorithm
except in a programming language. … But I believe
algorithms were present long before Turing et al. formulated
them, just as the concept of the number “two” was in
existence long before the writers of first grade textbooks and
other mathematical logicians gave it a certain precise
definition.

(Knuth 1966, p. 654)
Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 9 / 31

What is an algorithm?

Editor:
We are making this communication
intentionally short to leave as much
room as possible for the answers.

1 Please define “Algorithm.”
2 Please define “Formula.”
3 Please state the difference.

(Wangsness and Franklin 1966, p. 243)

To me the word algorithm denotes an abstract method for
computing some function, while a program is an embodiment
of a computational method in some programming language.
I can write several different programs for the same algorithm
(e.g., in ALGOL 60 and in PL/I, assuming these languages
are given an unambiguous interpretation).

Of course if I am pinned down and asked to explain more
precisely what I mean by these remarks, I am forced to admit
that I don’t know any way to define any particular algorithm
except in a programming language. … But I believe
algorithms were present long before Turing et al. formulated
them, just as the concept of the number “two” was in
existence long before the writers of first grade textbooks and
other mathematical logicians gave it a certain precise
definition.

(Knuth 1966, p. 654)
Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 9 / 31

Two approaches to algorithms

The traditional approach
Talk about algorithms should be
understood as talk about programs, within
the traditional bounds of computability
theory.

Reductive/nominalist approach
Strong Church’s Thesis

Algorithmic Realism
Algorithms should be understood as
legitimate mathematical objects, distinct
in kind from programs.

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 10 / 31

Outline

1 What are algorithms?
Running Example: Prim’s Algorithm
Two approaches to algorithms

2 Extant formal accounts of algorithm
The Traditional Approach
Algorithmic Realism

3 A New Direction
Trace Sets
Recovering Computability Theory

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 11 / 31

The Traditional Approach

The Traditional Approach
Talk about algorithms should be understood as talk about
programs.

Programs are sets of instructions written in
formal programming languages.

Unambiguous
Finitary

LazyPrimMST
p u b l i c c l a s s LazyPrimMST
{

p r i v a t e boo l ean [] marked ; // MST v e r t i c e s
p r i v a t e Queue<Edge> mst ; // MST edges
p r i v a t e MinPQ<Edge> pq ; // c r o s s i n g (and i n e l i g i b l e) edges

p u b l i c LazyPrimMST (EdgeWeightedGraph G)
{

pq = new MinPQ<Edge >() ;
marked = new boo l ean [G .V ()] ;
mst = new Queue<Edge >() ;

v i s i t (G, 0) ; // assumes G i s connected (s e e E x e r c i s e 4 . 3 . 2 2)
w h i l e (! pq . i sEmpty ())
{

Edge e = pq . de lMin () ; // Get lowes t−we ight
i n t v = e . e i t h e r () , w = e . o t h e r (v) ; // edge from pq .
i f (marked [v] && marked [w]) c on t i nu e ; // Sk ip i f i n e l i g i b l e .
mst . enqueue (e) ; // Add edge to t r e e .
i f (! marked [v]) v i s i t (G, v) ; // Add v e r t e x to t r e e
i f (! marked [w]) v i s i t (G, w) ; // (e i t h e r v or w) .

}
}

p r i v a t e vo i d v i s i t (EdgeWeightedGraph G, i n t v)
{ // Mark v and add to pq a l l edges from v to unmarked v e r t i c e s .

marked [v] = t r u e ;
f o r (Edge e : G . ad j (v))

i f (! marked [e . o t h e r (v)]) pq . i n s e r t (e) ;
}

p u b l i c I t e r a b l e <Edge> edges ()
{ r e t u r n mst ; }

p u b l i c doub l e we ight () // See E x e r c i s e 4 . 3 . 3 1 .
}

(Sedgewick and Wayne 2011, p. 619)

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 12 / 31

Algorithm vs. Program

Prim(G , v):

1 Intialize V1 = {v}, E1 = ∅, and set
G1 = (V1,E1).

2 While there is an edge that connects a
vertex in V1 to a vertex not in V1 do

a Find an edge e = {u, v ′} with smallest
weight w(e) such that u ∈ V1 and
v ′ /∈ V1.

b Set V1 = V1 ∪ {v ′}, E1 = E1 ∪ {e}, and
G1 = (V1,E1).

3 Output G1 = (V1,E1).

(Khoussainov and Khoussainova 2012, p. 172)

public LazyPrimMST(EdgeWeightedGraph G)
EdgeWeightedGraph is an abstract data type
defined elsewhere
G is represented by an array of sets of edges

{〈{0, 1}, 1〉, 〈{0, 2}, 1〉}
{〈{0, 1}, 1〉, 〈{1, 2}, 2〉, 〈{1, 3}, 2〉}
{〈{0, 2}, 1〉, 〈{1, 2}, 2〉, 〈{2, 3}, 3〉}

{〈{1, 3}, 2〉, 〈{2, 3}, 3〉}



Edge e = pq.delMin(); // Get lowest−weight edge
pq is a priority queue
pq.delMin() returns the edge with the lowest
weight that was added to pq first

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 13 / 31

Algorithms 6= Programs

Programs must represent abstract objects.
Algorithms work directly with them.
Programs must be fully specified.
Algorithms leave room for implementation details.
Programs are strongly language dependent.
Algorithms are somehow language independent.

program

algorithm

implemented by

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 14 / 31

Algorithmic Realism

Algorithmic Realism
Algorithms should be understood as legitimate
mathematical objects, distinct in kind from
programs.

What sort of mathematical object?

Equivalence classes of programs
(Milner 1971; Yanofsky 2011)

Algorithms as equivalence classes under a
relation of “essential sameness” between
programs (cf. Hume’s principle)
Walter Dean (2007, 2016) has cast doubt on
this approach

Generalised programs

Yiannis Moschovakis (1984, 1998) uses
abstract recursion
Yuri Gurevich (2000, 2001) generalises
standard machine models

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 15 / 31

Gurevich’s Sequential Algorithms
Gurevich (2000) argues sequential algorithms are associated with:

A set S of states
s ∈ S is a first order structure
s, t ∈ S share the same domain and
vocabulary V

A transition function τ : S → S
There is a finite set of terms T over V such
that when s1, s2 ∈ S agree on the values of
all t ∈, τ modifies them in the same way.

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 16 / 31

Generalised programs

Allow programs to operate directly
with abstract objects
Allow arbitrary functions as
operations

Issues
We still can’t handle
under-determined steps (e.g. 2a)
Heavy reliance on choice of
vocabulary
How to identify the right level of
abstraction?

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 17 / 31

Taking stock

Traditional approach Too fine-grained and language
dependent

Equivalence classes Does the “essential sameness”
relation exist?

Generalised programs Forced into arbitrary choices

What is our focus?
Algorithms as effective
procedures
Algorithms as distinct
methods for solving a
problem

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 18 / 31

Taking stock

Traditional approach Too fine-grained and language
dependent

Equivalence classes Does the “essential sameness”
relation exist?

Generalised programs Forced into arbitrary choices

What is our focus?
Algorithms as effective
procedures
Algorithms as distinct
methods for solving a
problem

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 18 / 31

A More Radical Algorithmic Realism

Idea: Divorce algorithms from
models of computation.
Think in terms of behaviours.

Goals
� Keep things abstract
� Allow for under-determined steps
� Connect back to computability theory

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 19 / 31

Outline

1 What are algorithms?
Running Example: Prim’s Algorithm
Two approaches to algorithms

2 Extant formal accounts of algorithm
The Traditional Approach
Algorithmic Realism

3 A New Direction
Trace Sets
Recovering Computability Theory

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 20 / 31

Algorithmic traces

An execution trace is the sequence of
updates when the algorithm is run.

Idea
An algorithm is the set of its own
traces.

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 21 / 31

Operations

Each step in a trace corresponds to
an abstract operation:

function
relation
behaviour

Idea
A trace set is assembled from a set of
operations.

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 22 / 31

Tasks and Contexts

Algorithms are solutions to problems,
or tasks.
Algorithms for the same task use the
same operations.

Idea
A task in a context provides a set of
assumed operations

Kruskal(G , v):

a Set T = (V ,E1), E1 = ∅. (Thus T has n
components).

b While T has more than one component
do

i Find an edge e such that e = {x , y} has
the smallest weight, and x and y belong
to two distinct components of T .

ii Declare E1 to be E1 ∪ {e}.
c Output (V ,E1).

(Khoussainov and Khoussainova 2012, p. 175)

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 23 / 31

Trace Sets

Trace set
Let T be the set of all traces.
An n-ary trace set a for task f in context c
is a function a : Dn → 2T such that

1 Each σ ∈ a(~a) is a concatenation of
assumed operations for f in c;

2 If σ ∈ a(~a) and τ ∈ a(~b) follow a
different sequence of operations, then
some assumed operation must
distinguish them.

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 24 / 31

Trace Sets

Trace set
Let T be the set of all traces.
An n-ary trace set a for task f in context c
is a function a : Dn → 2T such that

1 Each σ ∈ a(~a) is a concatenation of
assumed operations for f in c;

2 If σ ∈ a(~a) and τ ∈ a(~b) follow a
different sequence of operations, then
some assumed operation must
distinguish them.

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 24 / 31

Trace Sets

Trace set
Let T be the set of all traces.
An n-ary trace set a for task f in context c
is a function a : Dn → 2T such that

1 Each σ ∈ a(~a) is a concatenation of
assumed operations for f in c;

2 If σ ∈ a(~a) and τ ∈ a(~b) follow a
different sequence of operations, then
some assumed operation must
distinguish them.

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 24 / 31

Trace Sets

Trace set
Let T be the set of all traces.
An n-ary trace set a for task f in context c
is a function a : Dn → 2T such that

1 Each σ ∈ a(~a) is a concatenation of
assumed operations for f in c;

2 If σ ∈ a(~a) and τ ∈ a(~b) follow a
different sequence of operations, then
some assumed operation must
distinguish them.

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 24 / 31

Trace Sets

Trace set
Let T be the set of all traces.
An n-ary trace set a for task f in context c
is a function a : Dn → 2T such that

1 Each σ ∈ a(~a) is a concatenation of
assumed operations for f in c;

2 If σ ∈ a(~a) and τ ∈ a(~b) follow a
different sequence of operations, then
some assumed operation must
distinguish them.

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 24 / 31

Trace Sets

Trace set
Let T be the set of all traces.
An n-ary trace set a for task f in context c
is a function a : Dn → 2T such that

1 Each σ ∈ a(~a) is a concatenation of
assumed operations for f in c;

2 If σ ∈ a(~a) and τ ∈ a(~b) follow a
different sequence of operations, then
some assumed operation must
distinguish them.

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 24 / 31

Trace Sets

Goals
� Keep things abstract
� Allow for under-determined steps
� Connect back to computability theory

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 25 / 31

The Return of Computability Theory

What is computable in theory by a finite
agent?

What is an effective procedure?
Models of computation: Turing
machines, µ-recursive functions, …
Church-Turing Thesis: The intuitively
computable functions are the
Turing-computable functions

What is computable by a trace set?

Assumed operations can be
uncomputable
Traces can be infinitely long
A trace might describe an
uncomputable sequence

Are these problems?

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 26 / 31

Control Equivalence

Control equivalence
A control equivalence is an equivalence relation
on the steps in the traces of a trace set, such
that if σ[α] � τ [β] then either

1 the same assumed operation is applied to
both σ[α] and τ [β], and
σ[α+ 1] � τ [β + 1], or

2 some assumed operation distinguishes
σ[α] from τ [β].

A finite control equivalence is a control
equivalence with finitely many equivalence
classes.

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 27 / 31

Finite Control

Theorem
Let M = 〈S,Σ,Γ, δ, s0, sa, sr 〉 be any Turing machine. Then
RunM has a finite control equivalence.

Theorem
Let a be a trace set using Turing machine operations and Γ a
finite alphabet such that

1 a(v) 6= ∅ iff v ∈ Γ∗; and
2 |a(v)| = 1 for all v ∈ Γ∗; and
3 σ ∈ a(v) is a sequence of Turing machine configurations;

and
4 a has a finite control equivalence �.

Then there is a Turing machine M = 〈S,Γ,Γ, δ, s0, sa, sr 〉
corresponding to the sequences of configurations given by a.

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 28 / 31

Finite Control

Theorem
Let M = 〈S,Σ,Γ, δ, s0, sa, sr 〉 be any Turing machine. Then
RunM has a finite control equivalence.

Theorem
Let a be a trace set using Turing machine operations and Γ a
finite alphabet such that

1 a(v) 6= ∅ iff v ∈ Γ∗; and
2 |a(v)| = 1 for all v ∈ Γ∗; and
3 σ ∈ a(v) is a sequence of Turing machine configurations;

and
4 a has a finite control equivalence �.

Then there is a Turing machine M = 〈S,Γ,Γ, δ, s0, sa, sr 〉
corresponding to the sequences of configurations given by a.

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 28 / 31

Finite Control

Theorem
Let M = 〈S,Σ,Γ, δ, s0, sa, sr 〉 be any Turing machine. Then
RunM has a finite control equivalence.

Theorem
Let a be a trace set using Turing machine operations and Γ a
finite alphabet such that

1 a(v) 6= ∅ iff v ∈ Γ∗; and
2 |a(v)| = 1 for all v ∈ Γ∗; and
3 σ ∈ a(v) is a sequence of Turing machine configurations;

and
4 a has a finite control equivalence �.

Then there is a Turing machine M = 〈S,Γ,Γ, δ, s0, sa, sr 〉
corresponding to the sequences of configurations given by a.

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 28 / 31

Summary

Algorithms 6= programs
Extant accounts of algorithmic realism force arbitrary choices

Heavy reliance on traditional models of computation
Trace sets provide a promising new model for algorithms

Sufficiently abstract
Natural fit with intuition
Compatible with computability theory

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 29 / 31

What next?

Specifying trace sets
Recovering complexity theory
Implementation

Outside Computer Science
Applications:

Philosophy of mind
Constructivism
Law
Many more…

Intuitive similarities:
Plans/procedures
Mathematical proofs
Stories

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 30 / 31

Thank you

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 31 / 31

Thomas H. Cormen et al., eds. Introduction to Algorithms. 3rd ed. Cambridge, Mass:
MIT Press, 2009. 1292 pp. isbn: 978-0-262-03384-8 978-0-262-53305-8.
Walter Dean. “What Algorithms Could Not Be”. Rutgers University - Graduate School -
New Brunswick, 2007.
Walter Dean. “Algorithms and the Mathematical Foundations of Computer Science”. In:
Gödel’s Disjunction: The Scope and Limits of Mathematical Knowledge. First edition.
Oxford, United Kingdom: Oxford University Press, 11 Aug. 2016, pp. 19–66. isbn:
978-0-19-182037-3.
Yuri Gurevich. “Sequential Abstract-State Machines Capture Sequential Algorithms”. In:
ACM Transactions on Computational Logic 1.1 (1 July 2000), pp. 77–111.
Yuri Gurevich. The Sequential ASM Thesis. 2001.

Hartmut G. M. Huber. “Algorithm and Formula”. In: Communications of the ACM 9.9
(1966), pp. 653–654.

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 1 / 4

Bakhadyr Khoussainov and Nodira Khoussainova. Lectures on Discrete Mathematics for
Computer Science. Algebra and Discrete Mathematics v. 3. New Jersey: World
Scientific, 2012. 346 pp. isbn: 978-981-4340-50-2.
Donald E. Knuth. “Algorithm and Program; Information and Data”. In: Communications
of the ACM 9.9 (1966), p. 654.
Robin Milner. “An Algebraic Definition of Simulation Between Programs”. In:
Proceedings of the 2nd International Joint Conference on Artificial Intelligence.
IJCAI’71. London, England: Morgan Kaufmann Publishers Inc., 1971, pp. 481–489.
Yiannis N Moschovakis. “Abstract Recursion as a Foundation for the Theory of
Algorithms”. In: Computation and Proof Theory. Ed. by Egon Börger et al. Vol. 1104.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1984, pp. 289–364. isbn:
978-3-540-13901-0 978-3-540-39119-7.
Yiannis N Moschovakis. “On Founding the Theory of Algorithms”. In: Truth in
mathematics (1998), pp. 71–104.

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 2 / 4

Robert Sedgewick and Kevin Daniel Wayne. Algorithms. 4th ed. Upper Saddle River,
NJ: Addison-Wesley, 2011. 955 pp. isbn: 978-0-321-57351-3.

T. Wangsness and J. Franklin. ““Algorithm” and “Formula””. In: Communications of
the ACM 9.4 (1 Apr. 1966), p. 243.

N. S. Yanofsky. “Towards a Definition of an Algorithm”. In: Journal of Logic and
Computation 21.2 (1 Apr. 2011), pp. 253–286.

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 3 / 4

What do the textbooks say?

“Informally, an algorithm is any well-defined computational procedure that takes some
value, or set of values, as input and produces some value, or set of values, as output. An
algorithm is thus a sequence of computational steps that transform the input into the
output.” (Cormen et al. 2009, p. 5)
“The term algorithm is used in computer science to describe a finite, deterministic, and
effective problem-solving method suitable for implementation as a computer program.”
(Sedgewick and Wayne 2011, p. 4)
Brassard and Bratley
Harel
Knuth

Declan Thompson Towards a Formal Model of Algorithms Fourth Year Talk, 22/23 May 2020 4 / 4

	What are algorithms?
	Running Example: Prim's Algorithm
	Two approaches to algorithms

	Extant formal accounts of algorithm
	The Traditional Approach
	Algorithmic Realism

	A New Direction
	Trace Sets
	Recovering Computability Theory

	Summary
	Appendix
	References

