
Algorithms and Execution Traces

Declan Thompson
declan@stanford.edu

16 March 2023

Declan Thompson Algorithms and Execution Traces 16 March 2023 1 / 14

Outline

1 The big picture

2 Challenges

3 Main contributions

Declan Thompson Algorithms and Execution Traces 16 March 2023 2 / 14

Algorism The Euclidean algorithm
1 while rem(y, x) ̸= 0 do
2 z← x;
3 x← rem(y, x);
4 y← z;
5 end
6 return x

rem(a,b) is the remainder when a is
divided by b.

Declan Thompson Algorithms and Execution Traces 16 March 2023 3 / 14

An account of named algorithms

1 An algorithm is the set of its own execution traces.
2 Algorithms are constructed out of basic operations.
3 Algorithms can be described by finite texts (algorisms).

Declan Thompson Algorithms and Execution Traces 16 March 2023 4 / 14

An account of named algorithms

1 An algorithm is the set of its own execution traces.

2 Algorithms are constructed out of basic operations.
3 Algorithms can be described by finite texts (algorisms).

Declan Thompson Algorithms and Execution Traces 16 March 2023 4 / 14

An account of named algorithms

1 An algorithm is the set of its own execution traces.
2 Algorithms are constructed out of basic operations.

3 Algorithms can be described by finite texts (algorisms).

Declan Thompson Algorithms and Execution Traces 16 March 2023 4 / 14

An account of named algorithms

1 An algorithm is the set of its own execution traces.
2 Algorithms are constructed out of basic operations.
3 Algorithms can be described by finite texts (algorisms).

Declan Thompson Algorithms and Execution Traces 16 March 2023 4 / 14

An algorithm is the set of its own execution traces

Algorism The Euclidean algorithm
1 while rem(y, x) ̸= 0 do
2 z← x;
3 x← rem(y, x);
4 y← z;
5 end
6 return x

rem(a,b) is the remainder when a is
divided by b.

⟨x : 4, y : 6⟩,
⟨x : 4, y : 6⟩,
⟨x : 4, y : 6, z : 4⟩,
⟨x : 2, y : 6, z : 4⟩,
⟨x : 2, y : 4, z : 4⟩,
⟨x : 2, y : 4, z : 4⟩,
⟨x : 2⟩

Key idea
Model algorithms as sets of sequences
over appropriate universes of objects.

Declan Thompson Algorithms and Execution Traces 16 March 2023 5 / 14

An algorithm is the set of its own execution traces

Algorism The Euclidean algorithm
1 while rem(y, x) ̸= 0 do
2 z← x;
3 x← rem(y, x);
4 y← z;
5 end
6 return x

rem(a,b) is the remainder when a is
divided by b.

⟨x : 4, y : 6⟩

,

⟨x : 4, y : 6⟩,
⟨x : 4, y : 6, z : 4⟩,
⟨x : 2, y : 6, z : 4⟩,
⟨x : 2, y : 4, z : 4⟩,
⟨x : 2, y : 4, z : 4⟩,
⟨x : 2⟩

Key idea
Model algorithms as sets of sequences
over appropriate universes of objects.

Declan Thompson Algorithms and Execution Traces 16 March 2023 5 / 14

An algorithm is the set of its own execution traces

Algorism The Euclidean algorithm
1 while rem(y, x) ̸= 0 do
2 z← x;
3 x← rem(y, x);
4 y← z;
5 end
6 return x

rem(a,b) is the remainder when a is
divided by b.

⟨x : 4, y : 6⟩,
⟨x : 4, y : 6⟩

,

⟨x : 4, y : 6, z : 4⟩,
⟨x : 2, y : 6, z : 4⟩,
⟨x : 2, y : 4, z : 4⟩,
⟨x : 2, y : 4, z : 4⟩,
⟨x : 2⟩

Key idea
Model algorithms as sets of sequences
over appropriate universes of objects.

Declan Thompson Algorithms and Execution Traces 16 March 2023 5 / 14

An algorithm is the set of its own execution traces

Algorism The Euclidean algorithm
1 while rem(y, x) ̸= 0 do
2 z← x;
3 x← rem(y, x);
4 y← z;
5 end
6 return x

rem(a,b) is the remainder when a is
divided by b.

⟨x : 4, y : 6⟩,
⟨x : 4, y : 6⟩,
⟨x : 4, y : 6, z : 4⟩

,

⟨x : 2, y : 6, z : 4⟩,
⟨x : 2, y : 4, z : 4⟩,
⟨x : 2, y : 4, z : 4⟩,
⟨x : 2⟩

Key idea
Model algorithms as sets of sequences
over appropriate universes of objects.

Declan Thompson Algorithms and Execution Traces 16 March 2023 5 / 14

An algorithm is the set of its own execution traces

Algorism The Euclidean algorithm
1 while rem(y, x) ̸= 0 do
2 z← x;
3 x← rem(y, x);
4 y← z;
5 end
6 return x

rem(a,b) is the remainder when a is
divided by b.

⟨x : 4, y : 6⟩,
⟨x : 4, y : 6⟩,
⟨x : 4, y : 6, z : 4⟩,
⟨x : 2, y : 6, z : 4⟩

,

⟨x : 2, y : 4, z : 4⟩,
⟨x : 2, y : 4, z : 4⟩,
⟨x : 2⟩

Key idea
Model algorithms as sets of sequences
over appropriate universes of objects.

Declan Thompson Algorithms and Execution Traces 16 March 2023 5 / 14

An algorithm is the set of its own execution traces

Algorism The Euclidean algorithm
1 while rem(y, x) ̸= 0 do
2 z← x;
3 x← rem(y, x);
4 y← z;
5 end
6 return x

rem(a,b) is the remainder when a is
divided by b.

⟨x : 4, y : 6⟩,
⟨x : 4, y : 6⟩,
⟨x : 4, y : 6, z : 4⟩,
⟨x : 2, y : 6, z : 4⟩,
⟨x : 2, y : 4, z : 4⟩

,

⟨x : 2, y : 4, z : 4⟩,
⟨x : 2⟩

Key idea
Model algorithms as sets of sequences
over appropriate universes of objects.

Declan Thompson Algorithms and Execution Traces 16 March 2023 5 / 14

An algorithm is the set of its own execution traces

Algorism The Euclidean algorithm
1 while rem(y, x) ̸= 0 do
2 z← x;
3 x← rem(y, x);
4 y← z;
5 end
6 return x

rem(a,b) is the remainder when a is
divided by b.

⟨x : 4, y : 6⟩,
⟨x : 4, y : 6⟩,
⟨x : 4, y : 6, z : 4⟩,
⟨x : 2, y : 6, z : 4⟩,
⟨x : 2, y : 4, z : 4⟩,
⟨x : 2, y : 4, z : 4⟩

,

⟨x : 2⟩

Key idea
Model algorithms as sets of sequences
over appropriate universes of objects.

Declan Thompson Algorithms and Execution Traces 16 March 2023 5 / 14

An algorithm is the set of its own execution traces

Algorism The Euclidean algorithm
1 while rem(y, x) ̸= 0 do
2 z← x;
3 x← rem(y, x);
4 y← z;
5 end
6 return x

rem(a,b) is the remainder when a is
divided by b.

⟨x : 4, y : 6⟩,
⟨x : 4, y : 6⟩,
⟨x : 4, y : 6, z : 4⟩,
⟨x : 2, y : 6, z : 4⟩,
⟨x : 2, y : 4, z : 4⟩,
⟨x : 2, y : 4, z : 4⟩,
⟨x : 2⟩

Key idea
Model algorithms as sets of sequences
over appropriate universes of objects.

Declan Thompson Algorithms and Execution Traces 16 March 2023 5 / 14

An algorithm is the set of its own execution traces

Algorism The Euclidean algorithm
1 while rem(y, x) ̸= 0 do
2 z← x;
3 x← rem(y, x);
4 y← z;
5 end
6 return x

rem(a,b) is the remainder when a is
divided by b.

⟨x : 4, y : 6⟩,
⟨x : 4, y : 6⟩,
⟨x : 4, y : 6, z : 4⟩,
⟨x : 2, y : 6, z : 4⟩,
⟨x : 2, y : 4, z : 4⟩,
⟨x : 2, y : 4, z : 4⟩,
⟨x : 2⟩

Key idea
Model algorithms as sets of sequences
over appropriate universes of objects.

Declan Thompson Algorithms and Execution Traces 16 March 2023 5 / 14

Algorithms are constructed out of basic operations

Each algorithm is associated with a purpose and appears in a context.
A purpose in context provides a set of basic operations.
An algorithm for a given purpose, in a given context, is constructed
out of basic operations.

rem(y,x) ̸=0︷ ︸︸ ︷
⟨x : 4, y : 6⟩, ︸ ︷︷ ︸

z←x

⟨x : 4, y : 6⟩,
x←rem(y,x)︷ ︸︸ ︷

⟨x : 4, y : 6, z : 4⟩, ︸ ︷︷ ︸
y←z

⟨x : 2, y : 6, z : 4⟩,
rem(y,x)=0︷ ︸︸ ︷

⟨x : 2, y : 4, z : 4⟩, ︸ ︷︷ ︸
return x

⟨x : 2, y : 4, z : 4⟩, ⟨x : 2⟩

Question
What does it mean for an algorithm to
be constructed from basic operations?

Declan Thompson Algorithms and Execution Traces 16 March 2023 6 / 14

Algorithms are constructed out of basic operations

Each algorithm is associated with a purpose and appears in a context.

A purpose in context provides a set of basic operations.
An algorithm for a given purpose, in a given context, is constructed
out of basic operations.

rem(y,x) ̸=0︷ ︸︸ ︷
⟨x : 4, y : 6⟩, ︸ ︷︷ ︸

z←x

⟨x : 4, y : 6⟩,
x←rem(y,x)︷ ︸︸ ︷

⟨x : 4, y : 6, z : 4⟩, ︸ ︷︷ ︸
y←z

⟨x : 2, y : 6, z : 4⟩,
rem(y,x)=0︷ ︸︸ ︷

⟨x : 2, y : 4, z : 4⟩, ︸ ︷︷ ︸
return x

⟨x : 2, y : 4, z : 4⟩, ⟨x : 2⟩

Question
What does it mean for an algorithm to
be constructed from basic operations?

Declan Thompson Algorithms and Execution Traces 16 March 2023 6 / 14

Algorithms are constructed out of basic operations

Each algorithm is associated with a purpose and appears in a context.
A purpose in context provides a set of basic operations.

An algorithm for a given purpose, in a given context, is constructed
out of basic operations.

rem(y,x) ̸=0︷ ︸︸ ︷
⟨x : 4, y : 6⟩, ︸ ︷︷ ︸

z←x

⟨x : 4, y : 6⟩,
x←rem(y,x)︷ ︸︸ ︷

⟨x : 4, y : 6, z : 4⟩, ︸ ︷︷ ︸
y←z

⟨x : 2, y : 6, z : 4⟩,
rem(y,x)=0︷ ︸︸ ︷

⟨x : 2, y : 4, z : 4⟩, ︸ ︷︷ ︸
return x

⟨x : 2, y : 4, z : 4⟩, ⟨x : 2⟩

Question
What does it mean for an algorithm to
be constructed from basic operations?

Declan Thompson Algorithms and Execution Traces 16 March 2023 6 / 14

Algorithms are constructed out of basic operations

Each algorithm is associated with a purpose and appears in a context.
A purpose in context provides a set of basic operations.
An algorithm for a given purpose, in a given context, is constructed
out of basic operations.

rem(y,x) ̸=0︷ ︸︸ ︷
⟨x : 4, y : 6⟩, ︸ ︷︷ ︸

z←x

⟨x : 4, y : 6⟩,
x←rem(y,x)︷ ︸︸ ︷

⟨x : 4, y : 6, z : 4⟩, ︸ ︷︷ ︸
y←z

⟨x : 2, y : 6, z : 4⟩,
rem(y,x)=0︷ ︸︸ ︷

⟨x : 2, y : 4, z : 4⟩, ︸ ︷︷ ︸
return x

⟨x : 2, y : 4, z : 4⟩, ⟨x : 2⟩

Question
What does it mean for an algorithm to
be constructed from basic operations?

Declan Thompson Algorithms and Execution Traces 16 March 2023 6 / 14

Algorithms are constructed out of basic operations

Each algorithm is associated with a purpose and appears in a context.
A purpose in context provides a set of basic operations.
An algorithm for a given purpose, in a given context, is constructed
out of basic operations.

rem(y,x) ̸=0︷ ︸︸ ︷
⟨x : 4, y : 6⟩, ︸ ︷︷ ︸

z←x

⟨x : 4, y : 6⟩,
x←rem(y,x)︷ ︸︸ ︷

⟨x : 4, y : 6, z : 4⟩, ︸ ︷︷ ︸
y←z

⟨x : 2, y : 6, z : 4⟩,
rem(y,x)=0︷ ︸︸ ︷

⟨x : 2, y : 4, z : 4⟩, ︸ ︷︷ ︸
return x

⟨x : 2, y : 4, z : 4⟩, ⟨x : 2⟩

Question
What does it mean for an algorithm to
be constructed from basic operations?

Declan Thompson Algorithms and Execution Traces 16 March 2023 6 / 14

Algorithms are constructed out of basic operations

Each algorithm is associated with a purpose and appears in a context.
A purpose in context provides a set of basic operations.
An algorithm for a given purpose, in a given context, is constructed
out of basic operations.

rem(y,x) ̸=0︷ ︸︸ ︷
⟨x : 4, y : 6⟩, ︸ ︷︷ ︸

z←x

⟨x : 4, y : 6⟩,
x←rem(y,x)︷ ︸︸ ︷

⟨x : 4, y : 6, z : 4⟩, ︸ ︷︷ ︸
y←z

⟨x : 2, y : 6, z : 4⟩,
rem(y,x)=0︷ ︸︸ ︷

⟨x : 2, y : 4, z : 4⟩, ︸ ︷︷ ︸
return x

⟨x : 2, y : 4, z : 4⟩, ⟨x : 2⟩

Question
What does it mean for an algorithm to
be constructed from basic operations?

Declan Thompson Algorithms and Execution Traces 16 March 2023 6 / 14

Control Equivalence

Consider trace points: partial execution traces.

Length 1 trace points are inputs.
The same set of operations is
applied to all inputs.

︸ ︷︷ ︸
rem(y,x) ̸=0

⟨x : 4, y : 6⟩, ⟨x : 4, y : 6⟩, . . .

rem(y,x)=0︷ ︸︸ ︷
⟨x : 2, y : 8⟩, ⟨x : 2, y : 8⟩, . . .

If σ and τ haven’t yet been
distinguished, then the same set
of operations is applied to each.

{extensions of σ, τ} = {σ, τ} ◦ p

Define a control equivalence relation on the trace points of an algorithm:

σ ⇆ τ iff “the same thing happens next” in σ and τ

A control equivalence describes how an algorithm is constructed from
operations given by a purpose in context.

Declan Thompson Algorithms and Execution Traces 16 March 2023 7 / 14

Control Equivalence
Consider trace points: partial execution traces.

Length 1 trace points are inputs.
The same set of operations is
applied to all inputs.

︸ ︷︷ ︸
rem(y,x) ̸=0

⟨x : 4, y : 6⟩, ⟨x : 4, y : 6⟩, . . .

rem(y,x)=0︷ ︸︸ ︷
⟨x : 2, y : 8⟩, ⟨x : 2, y : 8⟩, . . .

If σ and τ haven’t yet been
distinguished, then the same set
of operations is applied to each.

{extensions of σ, τ} = {σ, τ} ◦ p

Define a control equivalence relation on the trace points of an algorithm:

σ ⇆ τ iff “the same thing happens next” in σ and τ

A control equivalence describes how an algorithm is constructed from
operations given by a purpose in context.

Declan Thompson Algorithms and Execution Traces 16 March 2023 7 / 14

Control Equivalence
Consider trace points: partial execution traces.

Length 1 trace points are inputs.
The same set of operations is
applied to all inputs.

︸ ︷︷ ︸
rem(y,x) ̸=0

⟨x : 4, y : 6⟩, ⟨x : 4, y : 6⟩, . . .

rem(y,x)=0︷ ︸︸ ︷
⟨x : 2, y : 8⟩, ⟨x : 2, y : 8⟩, . . .

If σ and τ haven’t yet been
distinguished, then the same set
of operations is applied to each.

{extensions of σ, τ} = {σ, τ} ◦ p

Define a control equivalence relation on the trace points of an algorithm:

σ ⇆ τ iff “the same thing happens next” in σ and τ

A control equivalence describes how an algorithm is constructed from
operations given by a purpose in context.

Declan Thompson Algorithms and Execution Traces 16 March 2023 7 / 14

Control Equivalence
Consider trace points: partial execution traces.

Length 1 trace points are inputs.
The same set of operations is
applied to all inputs.

︸ ︷︷ ︸
rem(y,x) ̸=0

⟨x : 4, y : 6⟩, ⟨x : 4, y : 6⟩, . . .

rem(y,x)=0︷ ︸︸ ︷
⟨x : 2, y : 8⟩, ⟨x : 2, y : 8⟩, . . .

If σ and τ haven’t yet been
distinguished, then the same set
of operations is applied to each.

{extensions of σ, τ} = {σ, τ} ◦ p

Define a control equivalence relation on the trace points of an algorithm:

σ ⇆ τ iff “the same thing happens next” in σ and τ

A control equivalence describes how an algorithm is constructed from
operations given by a purpose in context.

Declan Thompson Algorithms and Execution Traces 16 March 2023 7 / 14

Control Equivalence
Consider trace points: partial execution traces.

Length 1 trace points are inputs.
The same set of operations is
applied to all inputs.

︸ ︷︷ ︸
rem(y,x) ̸=0

⟨x : 4, y : 6⟩, ⟨x : 4, y : 6⟩, . . .

rem(y,x)=0︷ ︸︸ ︷
⟨x : 2, y : 8⟩, ⟨x : 2, y : 8⟩, . . .

If σ and τ haven’t yet been
distinguished, then the same set
of operations is applied to each.

{extensions of σ, τ} = {σ, τ} ◦ p

Define a control equivalence relation on the trace points of an algorithm:

σ ⇆ τ iff “the same thing happens next” in σ and τ

A control equivalence describes how an algorithm is constructed from
operations given by a purpose in context.

Declan Thompson Algorithms and Execution Traces 16 March 2023 7 / 14

Control Equivalence
Consider trace points: partial execution traces.

Length 1 trace points are inputs.
The same set of operations is
applied to all inputs.

︸ ︷︷ ︸
rem(y,x) ̸=0

⟨x : 4, y : 6⟩, ⟨x : 4, y : 6⟩, . . .

rem(y,x)=0︷ ︸︸ ︷
⟨x : 2, y : 8⟩, ⟨x : 2, y : 8⟩, . . .

If σ and τ haven’t yet been
distinguished, then the same set
of operations is applied to each.

{extensions of σ, τ} = {σ, τ} ◦ p

Define a control equivalence relation on the trace points of an algorithm:

σ ⇆ τ iff “the same thing happens next” in σ and τ

A control equivalence describes how an algorithm is constructed from
operations given by a purpose in context.

Declan Thompson Algorithms and Execution Traces 16 March 2023 7 / 14

Control Equivalence
Consider trace points: partial execution traces.

Length 1 trace points are inputs.
The same set of operations is
applied to all inputs.

︸ ︷︷ ︸
rem(y,x) ̸=0

⟨x : 4, y : 6⟩, ⟨x : 4, y : 6⟩, . . .

rem(y,x)=0︷ ︸︸ ︷
⟨x : 2, y : 8⟩, ⟨x : 2, y : 8⟩, . . .

If σ and τ haven’t yet been
distinguished, then the same set
of operations is applied to each.

{extensions of σ, τ} = {σ, τ} ◦ p

Define a control equivalence relation on the trace points of an algorithm:

σ ⇆ τ iff “the same thing happens next” in σ and τ

A control equivalence describes how an algorithm is constructed from
operations given by a purpose in context.

Declan Thompson Algorithms and Execution Traces 16 March 2023 7 / 14

Algorithms can be described by finite texts

Algorithms are describable by finite texts.

At the same time, algorithms are language independent.

A finite control equivalence is a control equivalence with a finite number
of equivalence classes, each using a finite stock of operations.

Thesis
An algorithm is a set of execution traces
equipped with a finite control equivalence.

Declan Thompson Algorithms and Execution Traces 16 March 2023 8 / 14

Algorithms can be described by finite texts

Algorithms are describable by finite texts.
At the same time, algorithms are language independent.

A finite control equivalence is a control equivalence with a finite number
of equivalence classes, each using a finite stock of operations.

Thesis
An algorithm is a set of execution traces
equipped with a finite control equivalence.

Declan Thompson Algorithms and Execution Traces 16 March 2023 8 / 14

Algorithms can be described by finite texts

Algorithms are describable by finite texts.
At the same time, algorithms are language independent.

A finite control equivalence is a control equivalence with a finite number
of equivalence classes, each using a finite stock of operations.

Thesis
An algorithm is a set of execution traces
equipped with a finite control equivalence.

Declan Thompson Algorithms and Execution Traces 16 March 2023 8 / 14

Algorithms can be described by finite texts

Algorithms are describable by finite texts.
At the same time, algorithms are language independent.

A finite control equivalence is a control equivalence with a finite number
of equivalence classes, each using a finite stock of operations.

Thesis
An algorithm is a set of execution traces
equipped with a finite control equivalence.

Declan Thompson Algorithms and Execution Traces 16 March 2023 8 / 14

Outline

1 The big picture

2 Challenges

3 Main contributions

Declan Thompson Algorithms and Execution Traces 16 March 2023 9 / 14

Two perspectives on algorithms (at least)

An orthodox definition
An algorithm is a finite sequence
of instructions that:

is unambiguous;
is deterministic;
uses fixed finitary operations;
is guaranteed to solve its task;
takes a finite amount of time.

Consequences of my thesis
An algorithm is a non-syntactic
object that:

may be under-determined;
need not be deterministic;
may use arbitrary operations;
may be incorrect;
could never halt (or more!).

Standard accounts of algorithms start from computability theory.
Examples abound of algorithms which violate the standard conditions.

Declan Thompson Algorithms and Execution Traces 16 March 2023 10 / 14

Two perspectives on algorithms (at least)

An orthodox definition
An algorithm is a finite sequence
of instructions that:

is unambiguous;
is deterministic;
uses fixed finitary operations;
is guaranteed to solve its task;
takes a finite amount of time.

Consequences of my thesis
An algorithm is a non-syntactic
object that:

may be under-determined;
need not be deterministic;
may use arbitrary operations;
may be incorrect;
could never halt (or more!).

Standard accounts of algorithms start from computability theory.
Examples abound of algorithms which violate the standard conditions.

Declan Thompson Algorithms and Execution Traces 16 March 2023 10 / 14

Two perspectives on algorithms (at least)

An orthodox definition
An algorithm is a finite sequence
of instructions that:

is unambiguous;
is deterministic;
uses fixed finitary operations;
is guaranteed to solve its task;
takes a finite amount of time.

Consequences of my thesis
An algorithm is a non-syntactic
object that:

may be under-determined;
need not be deterministic;
may use arbitrary operations;
may be incorrect;
could never halt (or more!).

Standard accounts of algorithms start from computability theory.

Examples abound of algorithms which violate the standard conditions.

Declan Thompson Algorithms and Execution Traces 16 March 2023 10 / 14

Two perspectives on algorithms (at least)

An orthodox definition
An algorithm is a finite sequence
of instructions that:

is unambiguous;
is deterministic;
uses fixed finitary operations;
is guaranteed to solve its task;
takes a finite amount of time.

Consequences of my thesis
An algorithm is a non-syntactic
object that:

may be under-determined;
need not be deterministic;
may use arbitrary operations;
may be incorrect;
could never halt (or more!).

Standard accounts of algorithms start from computability theory.

Examples abound of algorithms which violate the standard conditions.

Declan Thompson Algorithms and Execution Traces 16 March 2023 10 / 14

Two perspectives on algorithms (at least)

An orthodox definition
An algorithm is a finite sequence
of instructions that:

is unambiguous;
is deterministic;
uses fixed finitary operations;
is guaranteed to solve its task;
takes a finite amount of time.

Consequences of my thesis
An algorithm is a non-syntactic
object that:

may be under-determined;
need not be deterministic;
may use arbitrary operations;
may be incorrect;
could never halt (or more!).

Standard accounts of algorithms start from computability theory.
Examples abound of algorithms which violate the standard conditions.

Declan Thompson Algorithms and Execution Traces 16 March 2023 10 / 14

Example argument: executive finiteness

If σ is an algorithm’s execution
trace then |σ| < ω

Enumeration algorithms allow
infinite traces

The number of steps between
inputs/outputs in algorithm’s
execution traces is always finite

Any sufficiently powerful model
of computation contains
instances entering infinite loops

(1) Those aren’t algorithms! This is a terminological dispute

(2) If σ is an algorithm’s
execution trace then |σ| ≤ ω

Transfinitary algorithms appear in
some theoretical contexts

Allowing algorithms with traces of arbitrary length gives a more general
theory and avoids unnecessary overheads.

Principle Algorithms can have execution traces of any ordinal length.
Desideratum An explanation of when executive finiteness does hold.

Declan Thompson Algorithms and Execution Traces 16 March 2023 11 / 14

Example argument: executive finiteness

If σ is an algorithm’s execution
trace then |σ| < ω

Enumeration algorithms allow
infinite traces

The number of steps between
inputs/outputs in algorithm’s
execution traces is always finite

Any sufficiently powerful model
of computation contains
instances entering infinite loops

(1) Those aren’t algorithms! This is a terminological dispute

(2) If σ is an algorithm’s
execution trace then |σ| ≤ ω

Transfinitary algorithms appear in
some theoretical contexts

Allowing algorithms with traces of arbitrary length gives a more general
theory and avoids unnecessary overheads.

Principle Algorithms can have execution traces of any ordinal length.
Desideratum An explanation of when executive finiteness does hold.

Declan Thompson Algorithms and Execution Traces 16 March 2023 11 / 14

Example argument: executive finiteness

If σ is an algorithm’s execution
trace then |σ| < ω

Enumeration algorithms allow
infinite traces

The number of steps between
inputs/outputs in algorithm’s
execution traces is always finite

Any sufficiently powerful model
of computation contains
instances entering infinite loops

(1) Those aren’t algorithms! This is a terminological dispute

(2) If σ is an algorithm’s
execution trace then |σ| ≤ ω

Transfinitary algorithms appear in
some theoretical contexts

Allowing algorithms with traces of arbitrary length gives a more general
theory and avoids unnecessary overheads.

Principle Algorithms can have execution traces of any ordinal length.
Desideratum An explanation of when executive finiteness does hold.

Declan Thompson Algorithms and Execution Traces 16 March 2023 11 / 14

Example argument: executive finiteness

If σ is an algorithm’s execution
trace then |σ| < ω

Enumeration algorithms allow
infinite traces

The number of steps between
inputs/outputs in algorithm’s
execution traces is always finite

Any sufficiently powerful model
of computation contains
instances entering infinite loops

(1) Those aren’t algorithms! This is a terminological dispute

(2) If σ is an algorithm’s
execution trace then |σ| ≤ ω

Transfinitary algorithms appear in
some theoretical contexts

Allowing algorithms with traces of arbitrary length gives a more general
theory and avoids unnecessary overheads.

Principle Algorithms can have execution traces of any ordinal length.
Desideratum An explanation of when executive finiteness does hold.

Declan Thompson Algorithms and Execution Traces 16 March 2023 11 / 14

Example argument: executive finiteness

If σ is an algorithm’s execution
trace then |σ| < ω

Enumeration algorithms allow
infinite traces

The number of steps between
inputs/outputs in algorithm’s
execution traces is always finite

Any sufficiently powerful model
of computation contains
instances entering infinite loops

(1) Those aren’t algorithms!

This is a terminological dispute

(2) If σ is an algorithm’s
execution trace then |σ| ≤ ω

Transfinitary algorithms appear in
some theoretical contexts

Allowing algorithms with traces of arbitrary length gives a more general
theory and avoids unnecessary overheads.

Principle Algorithms can have execution traces of any ordinal length.
Desideratum An explanation of when executive finiteness does hold.

Declan Thompson Algorithms and Execution Traces 16 March 2023 11 / 14

Example argument: executive finiteness

If σ is an algorithm’s execution
trace then |σ| < ω

Enumeration algorithms allow
infinite traces

The number of steps between
inputs/outputs in algorithm’s
execution traces is always finite

Any sufficiently powerful model
of computation contains
instances entering infinite loops

(1) Those aren’t algorithms! This is a terminological dispute

(2) If σ is an algorithm’s
execution trace then |σ| ≤ ω

Transfinitary algorithms appear in
some theoretical contexts

Allowing algorithms with traces of arbitrary length gives a more general
theory and avoids unnecessary overheads.

Principle Algorithms can have execution traces of any ordinal length.
Desideratum An explanation of when executive finiteness does hold.

Declan Thompson Algorithms and Execution Traces 16 March 2023 11 / 14

Example argument: executive finiteness

If σ is an algorithm’s execution
trace then |σ| < ω

Enumeration algorithms allow
infinite traces

The number of steps between
inputs/outputs in algorithm’s
execution traces is always finite

Any sufficiently powerful model
of computation contains
instances entering infinite loops

(1) Those aren’t algorithms! This is a terminological dispute

(2) If σ is an algorithm’s
execution trace then |σ| ≤ ω

Transfinitary algorithms appear in
some theoretical contexts

Allowing algorithms with traces of arbitrary length gives a more general
theory and avoids unnecessary overheads.

Principle Algorithms can have execution traces of any ordinal length.
Desideratum An explanation of when executive finiteness does hold.

Declan Thompson Algorithms and Execution Traces 16 March 2023 11 / 14

Example argument: executive finiteness

If σ is an algorithm’s execution
trace then |σ| < ω

Enumeration algorithms allow
infinite traces

The number of steps between
inputs/outputs in algorithm’s
execution traces is always finite

Any sufficiently powerful model
of computation contains
instances entering infinite loops

(1) Those aren’t algorithms! This is a terminological dispute

(2) If σ is an algorithm’s
execution trace then |σ| ≤ ω

Transfinitary algorithms appear in
some theoretical contexts

Allowing algorithms with traces of arbitrary length gives a more general
theory and avoids unnecessary overheads.

Principle Algorithms can have execution traces of any ordinal length.
Desideratum An explanation of when executive finiteness does hold.

Declan Thompson Algorithms and Execution Traces 16 March 2023 11 / 14

Example argument: executive finiteness

If σ is an algorithm’s execution
trace then |σ| < ω

Enumeration algorithms allow
infinite traces

The number of steps between
inputs/outputs in algorithm’s
execution traces is always finite

Any sufficiently powerful model
of computation contains
instances entering infinite loops

(1) Those aren’t algorithms! This is a terminological dispute

(2) If σ is an algorithm’s
execution trace then |σ| ≤ ω

Transfinitary algorithms appear in
some theoretical contexts

Allowing algorithms with traces of arbitrary length gives a more general
theory and avoids unnecessary overheads.

Principle Algorithms can have execution traces of any ordinal length.
Desideratum An explanation of when executive finiteness does hold.

Declan Thompson Algorithms and Execution Traces 16 March 2023 11 / 14

Example argument: executive finiteness

If σ is an algorithm’s execution
trace then |σ| < ω

Enumeration algorithms allow
infinite traces

The number of steps between
inputs/outputs in algorithm’s
execution traces is always finite

Any sufficiently powerful model
of computation contains
instances entering infinite loops

(1) Those aren’t algorithms! This is a terminological dispute

(2) If σ is an algorithm’s
execution trace then |σ| ≤ ω

Transfinitary algorithms appear in
some theoretical contexts

Allowing algorithms with traces of arbitrary length gives a more general
theory and avoids unnecessary overheads.

Principle Algorithms can have execution traces of any ordinal length.

Desideratum An explanation of when executive finiteness does hold.

Declan Thompson Algorithms and Execution Traces 16 March 2023 11 / 14

Example argument: executive finiteness

If σ is an algorithm’s execution
trace then |σ| < ω

Enumeration algorithms allow
infinite traces

The number of steps between
inputs/outputs in algorithm’s
execution traces is always finite

Any sufficiently powerful model
of computation contains
instances entering infinite loops

(1) Those aren’t algorithms! This is a terminological dispute

(2) If σ is an algorithm’s
execution trace then |σ| ≤ ω

Transfinitary algorithms appear in
some theoretical contexts

Allowing algorithms with traces of arbitrary length gives a more general
theory and avoids unnecessary overheads.

Principle Algorithms can have execution traces of any ordinal length.
Desideratum An explanation of when executive finiteness does hold.

Declan Thompson Algorithms and Execution Traces 16 March 2023 11 / 14

Outline

1 The big picture

2 Challenges

3 Main contributions

Declan Thompson Algorithms and Execution Traces 16 March 2023 12 / 14

Main contributions

1 A clear distinction between the two perspectives on algorithms:

The sense of algorithm familiar from computability theory (the effective
procedures perspective)
The sense of algorithm used when considering named algorithms (the
distinct methods perspective)

2 A careful analysis of the concept of an algorithm from the distinct
methods perspective:

A trace-based framework within which the analysis proceeds
A set of principles that algorithms satisfy
A set of desiderata for any account of algorithms to meet

3 A formal definition of finite control trace sets for a restricted class of
algorithms, with associated results:

Finite control trace sets meet the desiderata and satisfy the principles
Every finite control trace set can be specified by a finite text
The recovery of computability theory using finite control trace sets

Declan Thompson Algorithms and Execution Traces 16 March 2023 13 / 14

Main contributions

1 A clear distinction between the two perspectives on algorithms:

The sense of algorithm familiar from computability theory (the effective
procedures perspective)
The sense of algorithm used when considering named algorithms (the
distinct methods perspective)

2 A careful analysis of the concept of an algorithm from the distinct
methods perspective:

A trace-based framework within which the analysis proceeds
A set of principles that algorithms satisfy
A set of desiderata for any account of algorithms to meet

3 A formal definition of finite control trace sets for a restricted class of
algorithms, with associated results:

Finite control trace sets meet the desiderata and satisfy the principles
Every finite control trace set can be specified by a finite text
The recovery of computability theory using finite control trace sets

Declan Thompson Algorithms and Execution Traces 16 March 2023 13 / 14

Main contributions

1 A clear distinction between the two perspectives on algorithms:
The sense of algorithm familiar from computability theory (the effective
procedures perspective)
The sense of algorithm used when considering named algorithms (the
distinct methods perspective)

2 A careful analysis of the concept of an algorithm from the distinct
methods perspective:

A trace-based framework within which the analysis proceeds
A set of principles that algorithms satisfy
A set of desiderata for any account of algorithms to meet

3 A formal definition of finite control trace sets for a restricted class of
algorithms, with associated results:

Finite control trace sets meet the desiderata and satisfy the principles
Every finite control trace set can be specified by a finite text
The recovery of computability theory using finite control trace sets

Declan Thompson Algorithms and Execution Traces 16 March 2023 13 / 14

Main contributions

1 A clear distinction between the two perspectives on algorithms:
The sense of algorithm familiar from computability theory (the effective
procedures perspective)
The sense of algorithm used when considering named algorithms (the
distinct methods perspective)

2 A careful analysis of the concept of an algorithm from the distinct
methods perspective:

A trace-based framework within which the analysis proceeds

A set of principles that algorithms satisfy
A set of desiderata for any account of algorithms to meet

3 A formal definition of finite control trace sets for a restricted class of
algorithms, with associated results:

Finite control trace sets meet the desiderata and satisfy the principles
Every finite control trace set can be specified by a finite text
The recovery of computability theory using finite control trace sets

Declan Thompson Algorithms and Execution Traces 16 March 2023 13 / 14

Main contributions

1 A clear distinction between the two perspectives on algorithms:
The sense of algorithm familiar from computability theory (the effective
procedures perspective)
The sense of algorithm used when considering named algorithms (the
distinct methods perspective)

2 A careful analysis of the concept of an algorithm from the distinct
methods perspective:

A trace-based framework within which the analysis proceeds
A set of principles that algorithms satisfy
A set of desiderata for any account of algorithms to meet

3 A formal definition of finite control trace sets for a restricted class of
algorithms, with associated results:

Finite control trace sets meet the desiderata and satisfy the principles
Every finite control trace set can be specified by a finite text
The recovery of computability theory using finite control trace sets

Declan Thompson Algorithms and Execution Traces 16 March 2023 13 / 14

Main contributions

1 A clear distinction between the two perspectives on algorithms:
The sense of algorithm familiar from computability theory (the effective
procedures perspective)
The sense of algorithm used when considering named algorithms (the
distinct methods perspective)

2 A careful analysis of the concept of an algorithm from the distinct
methods perspective:

A trace-based framework within which the analysis proceeds
A set of principles that algorithms satisfy
A set of desiderata for any account of algorithms to meet

3 A formal definition of finite control trace sets for a restricted class of
algorithms, with associated results:

Finite control trace sets meet the desiderata and satisfy the principles

Every finite control trace set can be specified by a finite text
The recovery of computability theory using finite control trace sets

Declan Thompson Algorithms and Execution Traces 16 March 2023 13 / 14

Main contributions

1 A clear distinction between the two perspectives on algorithms:
The sense of algorithm familiar from computability theory (the effective
procedures perspective)
The sense of algorithm used when considering named algorithms (the
distinct methods perspective)

2 A careful analysis of the concept of an algorithm from the distinct
methods perspective:

A trace-based framework within which the analysis proceeds
A set of principles that algorithms satisfy
A set of desiderata for any account of algorithms to meet

3 A formal definition of finite control trace sets for a restricted class of
algorithms, with associated results:

Finite control trace sets meet the desiderata and satisfy the principles
Every finite control trace set can be specified by a finite text

The recovery of computability theory using finite control trace sets

Declan Thompson Algorithms and Execution Traces 16 March 2023 13 / 14

Main contributions

1 A clear distinction between the two perspectives on algorithms:
The sense of algorithm familiar from computability theory (the effective
procedures perspective)
The sense of algorithm used when considering named algorithms (the
distinct methods perspective)

2 A careful analysis of the concept of an algorithm from the distinct
methods perspective:

A trace-based framework within which the analysis proceeds
A set of principles that algorithms satisfy
A set of desiderata for any account of algorithms to meet

3 A formal definition of finite control trace sets for a restricted class of
algorithms, with associated results:

Finite control trace sets meet the desiderata and satisfy the principles
Every finite control trace set can be specified by a finite text
The recovery of computability theory using finite control trace sets

Declan Thompson Algorithms and Execution Traces 16 March 2023 13 / 14

Thank you

Declan Thompson Algorithms and Execution Traces 16 March 2023 14 / 14

Declan Thompson Algorithms and Execution Traces 16 March 2023 1 / 1

	The big picture
	Challenges
	Main contributions
	Appendix

