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Algorism The Euclidean algorithm
1 while rem(y, x) ̸= 0 do
2 z← x;
3 x← rem(y, x);
4 y← z;
5 end
6 return x

rem(a,b) is the remainder when a is
divided by b.
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An account of named algorithms

1 An algorithm is the set of its own execution traces.
2 Algorithms are constructed out of basic operations.
3 Algorithms can be described by finite texts (algorisms).
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An algorithm is the set of its own execution traces

Algorism The Euclidean algorithm
1 while rem(y, x) ̸= 0 do
2 z← x;
3 x← rem(y, x);
4 y← z;
5 end
6 return x

rem(a,b) is the remainder when a is
divided by b.

⟨x : 4, y : 6⟩,
⟨x : 4, y : 6⟩,
⟨x : 4, y : 6, z : 4⟩,
⟨x : 2, y : 6, z : 4⟩,
⟨x : 2, y : 4, z : 4⟩,
⟨x : 2, y : 4, z : 4⟩,
⟨x : 2⟩

Key idea
Model algorithms as sets of sequences
over appropriate universes of objects.
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Algorithms are constructed out of basic operations

Each algorithm is associated with a purpose and appears in a context.
A purpose in context provides a set of basic operations.
An algorithm for a given purpose, in a given context, is constructed
out of basic operations.

rem(y,x) ̸=0︷ ︸︸ ︷
⟨x : 4, y : 6⟩, ︸ ︷︷ ︸

z←x

⟨x : 4, y : 6⟩,
x←rem(y,x)︷ ︸︸ ︷

⟨x : 4, y : 6, z : 4⟩, ︸ ︷︷ ︸
y←z

⟨x : 2, y : 6, z : 4⟩,
rem(y,x)=0︷ ︸︸ ︷

⟨x : 2, y : 4, z : 4⟩, ︸ ︷︷ ︸
return x

⟨x : 2, y : 4, z : 4⟩, ⟨x : 2⟩

Question
What does it mean for an algorithm to
be constructed from basic operations?
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Control Equivalence

Consider trace points: partial execution traces.

Length 1 trace points are inputs.
The same set of operations is
applied to all inputs.

︸ ︷︷ ︸
rem(y,x) ̸=0

⟨x : 4, y : 6⟩, ⟨x : 4, y : 6⟩, . . .

rem(y,x)=0︷ ︸︸ ︷
⟨x : 2, y : 8⟩, ⟨x : 2, y : 8⟩, . . .

If σ and τ haven’t yet been
distinguished, then the same set
of operations is applied to each.

{extensions of σ, τ} = {σ, τ} ◦ p

Define a control equivalence relation on the trace points of an algorithm:

σ ⇆ τ iff “the same thing happens next” in σ and τ

A control equivalence describes how an algorithm is constructed from
operations given by a purpose in context.
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Algorithms can be described by finite texts

Algorithms are describable by finite texts.

At the same time, algorithms are language independent.

A finite control equivalence is a control equivalence with a finite number
of equivalence classes, each using a finite stock of operations.

Thesis
An algorithm is a set of execution traces
equipped with a finite control equivalence.
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Two perspectives on algorithms (at least)

An orthodox definition
An algorithm is a finite sequence
of instructions that:

is unambiguous;
is deterministic;
uses fixed finitary operations;
is guaranteed to solve its task;
takes a finite amount of time.

Consequences of my thesis
An algorithm is a non-syntactic
object that:

may be under-determined;
need not be deterministic;
may use arbitrary operations;
may be incorrect;
could never halt (or more!).

Standard accounts of algorithms start from computability theory.
Examples abound of algorithms which violate the standard conditions.
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Example argument: executive finiteness

If σ is an algorithm’s execution
trace then |σ| < ω

Enumeration algorithms allow
infinite traces

The number of steps between
inputs/outputs in algorithm’s
execution traces is always finite

Any sufficiently powerful model
of computation contains
instances entering infinite loops

(1) Those aren’t algorithms! This is a terminological dispute

(2) If σ is an algorithm’s
execution trace then |σ| ≤ ω

Transfinitary algorithms appear in
some theoretical contexts

Allowing algorithms with traces of arbitrary length gives a more general
theory and avoids unnecessary overheads.

Principle Algorithms can have execution traces of any ordinal length.
Desideratum An explanation of when executive finiteness does hold.
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some theoretical contexts

Allowing algorithms with traces of arbitrary length gives a more general
theory and avoids unnecessary overheads.

Principle Algorithms can have execution traces of any ordinal length.
Desideratum An explanation of when executive finiteness does hold.
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Main contributions

1 A clear distinction between the two perspectives on algorithms:

The sense of algorithm familiar from computability theory (the effective
procedures perspective)
The sense of algorithm used when considering named algorithms (the
distinct methods perspective)

2 A careful analysis of the concept of an algorithm from the distinct
methods perspective:

A trace-based framework within which the analysis proceeds
A set of principles that algorithms satisfy
A set of desiderata for any account of algorithms to meet

3 A formal definition of finite control trace sets for a restricted class of
algorithms, with associated results:

Finite control trace sets meet the desiderata and satisfy the principles
Every finite control trace set can be specified by a finite text
The recovery of computability theory using finite control trace sets
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