
Formal Characterisations of Algorithm

Declan Thompson
Stanford University

IHPST, 27 February 2020

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 1 / 20



Talk Overview

1 Computability theory

2 Difficulties in accounting for algorithms

3 Sketch of a new approach

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 2 / 20



Algorithm as ‘effective procedure’

Study of algorithms didn’t start in earnest until the 20th century
The primary methodology has involved analysing ‘algorithm’ as
‘effective procedure’

1 Isolate a set of primitive basic operations
2 Specify simple (deterministic!) ways to combine these operations
3 We get a class M of machines/programs/function specifications

A is computable ⇔ some effective procedure decides A
⇔ some M ∈ M decides A

This approach has been very effective!

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 3 / 20



Algorithm as ‘effective procedure’

Study of algorithms didn’t start in earnest until the 20th century
The primary methodology has involved analysing ‘algorithm’ as
‘effective procedure’

1 Isolate a set of primitive basic operations
2 Specify simple (deterministic!) ways to combine these operations
3 We get a class M of machines/programs/function specifications

A is computable ⇔ some effective procedure decides A
⇔ some M ∈ M decides A

This approach has been very effective!

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 3 / 20



Algorithm as ‘effective procedure’

Study of algorithms didn’t start in earnest until the 20th century
The primary methodology has involved analysing ‘algorithm’ as
‘effective procedure’

1 Isolate a set of primitive basic operations
2 Specify simple (deterministic!) ways to combine these operations
3 We get a class M of machines/programs/function specifications

A is computable ⇔ some effective procedure decides A
⇔ some M ∈ M decides A

This approach has been very effective!

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 3 / 20



Algorithm as ‘effective procedure’

Study of algorithms didn’t start in earnest until the 20th century
The primary methodology has involved analysing ‘algorithm’ as
‘effective procedure’

1 Isolate a set of primitive basic operations
2 Specify simple (deterministic!) ways to combine these operations
3 We get a class M of machines/programs/function specifications

A is computable ⇔ some effective procedure decides A
⇔ some M ∈ M decides A

This approach has been very effective!

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 3 / 20



Computability theory doesn’t deal with algorithms

Many of the given definitions [of algorithm] are of the form ‘An
algorithm is a program in this language/system/machine’. This does
not really conform to the current usage of the word ‘algorithm’.
Rather, this is more in tune with the modern use of the word
‘program’. They all have a feel of being a specific implementation of
an algorithm on a specific system. (Yanofsky 2011, pp. 253–4)

The implementation/algorithm distinction is completely irrelevant for
computability theory

The distinction is also irrelevant for complexity theory
Both these disciplines deal with the existence of effective/efficient
solutions to problems
Formally, we can reduce talk of algorithms in
computability/complexity theory to talk of programs

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 4 / 20



Computability theory doesn’t deal with algorithms

Many of the given definitions [of algorithm] are of the form ‘An
algorithm is a program in this language/system/machine’. This does
not really conform to the current usage of the word ‘algorithm’.
Rather, this is more in tune with the modern use of the word
‘program’. They all have a feel of being a specific implementation of
an algorithm on a specific system. (Yanofsky 2011, pp. 253–4)
The implementation/algorithm distinction is completely irrelevant for
computability theory

The distinction is also irrelevant for complexity theory
Both these disciplines deal with the existence of effective/efficient
solutions to problems
Formally, we can reduce talk of algorithms in
computability/complexity theory to talk of programs

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 4 / 20



Modern computer science practice marks an intuitive distinction between
algorithms and implementations.

Can we make this precise?
What claims do we make about algorithms?

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 5 / 20



Claims about algorithms

1 Program X implements Prim’s algorithm.
2 MergeSort and QuickSort are different sorting algorithms.
3 The Euclidean algorithm is correct for finding the greatest common

divisor of two positive integers.
4 BubbleSort runs in O(n2) time.
5 Shor’s algorithm is a quantum algorithm.

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 6 / 20



Claims about algorithms

1 Program X implements Prim’s algorithm.
2 MergeSort and QuickSort are different sorting algorithms.
3 The Euclidean algorithm is correct for finding the greatest common

divisor of two positive integers.
4 BubbleSort runs in O(n2) time.
5 Shor’s algorithm is a quantum algorithm.

These claims suggest adherence to algorithmic realism (Dean 2016)
How do we formalise these claims?

Direct Algorithmic Realism
Strong Church’s Thesis
Algorithms-as-Abstracts

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 6 / 20



Claims about algorithms

1 Program X implements Prim’s algorithm.
2 MergeSort and QuickSort are different sorting algorithms.
3 The Euclidean algorithm is correct for finding the greatest common

divisor of two positive integers.
4 BubbleSort runs in O(n2) time.
5 Shor’s algorithm is a quantum algorithm.

These claims suggest adherence to algorithmic realism (Dean 2016)
How do we formalise these claims?

Direct Algorithmic Realism

Strong Church’s Thesis
Algorithms-as-Abstracts

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 6 / 20



Claims about algorithms

1 Program X implements Prim’s algorithm.
2 MergeSort and QuickSort are different sorting algorithms.
3 The Euclidean algorithm is correct for finding the greatest common

divisor of two positive integers.
4 BubbleSort runs in O(n2) time.
5 Shor’s algorithm is a quantum algorithm.

These claims suggest adherence to algorithmic realism (Dean 2016)
How do we formalise these claims?

Direct Algorithmic Realism
Strong Church’s Thesis

Algorithms-as-Abstracts

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 6 / 20



Claims about algorithms

1 Program X implements Prim’s algorithm.
2 MergeSort and QuickSort are different sorting algorithms.
3 The Euclidean algorithm is correct for finding the greatest common

divisor of two positive integers.
4 BubbleSort runs in O(n2) time.
5 Shor’s algorithm is a quantum algorithm.

These claims suggest adherence to algorithmic realism (Dean 2016)
How do we formalise these claims?

Direct Algorithmic Realism
Strong Church’s Thesis
Algorithms-as-Abstracts

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 6 / 20



Claims about algorithms

1 Program X implements Prim’s algorithm.
2 MergeSort and QuickSort are different sorting algorithms.
3 The Euclidean algorithm is correct for finding the greatest common

divisor of two positive integers.
4 BubbleSort runs in O(n2) time.
5 Shor’s algorithm is a quantum algorithm.

Goal of project
Find a mathematical object which can adequately play the role of
algorithm, as it’s used in statements like the above.

Standard philosophy of mathematics questions: out of scope

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 6 / 20



Claims about algorithms

1 Program X implements Prim’s algorithm.
2 MergeSort and QuickSort are different sorting algorithms.
3 The Euclidean algorithm is correct for finding the greatest common

divisor of two positive integers.
4 BubbleSort runs in O(n2) time.
5 Shor’s algorithm is a quantum algorithm.

Goal of project
Find a mathematical object which can adequately play the role of
algorithm, as it’s used in statements like the above.

Standard philosophy of mathematics questions: out of scope

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 6 / 20



Prim’s algorithm

Prim’s algorithm (Khoussainov and Khoussainova 2012, p. 172)
Prim(G, v):

1 Intialize V1 = {v}, E1 = ∅, and set G1 = (V1,E1).
2 While there is an edge that connects a vertex in V1 to a vertex not in

V1 do
a Find an edge e = {u, v ′} with smallest weight w(e) such that u ∈ V1

and v ′ /∈ V1.
b Set V1 = V1 ∪ {v ′}, E1 = E1 ∪ {e}, and G1 = (V1,E1).

3 Output G1 = (V1,E1).

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 7 / 20



Prim’s algorithm

Prim’s algorithm (Khoussainov and Khoussainova 2012, p. 172)
Prim(G, v):

1 Intialize V1 = {v}, E1 = ∅, and set G1 = (V1,E1).
2 While there is an edge that connects a vertex in V1 to a vertex not in

V1 do
a Find an edge e = {u, v ′} with smallest weight w(e) such that u ∈ V1

and v ′ /∈ V1.
b Set V1 = V1 ∪ {v ′}, E1 = E1 ∪ {e}, and G1 = (V1,E1).

3 Output G1 = (V1,E1).

G =

v 1

1

3

22 G1 =

v 1

1

3

21

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 7 / 20



Prim’s algorithm

Prim’s algorithm (Khoussainov and Khoussainova 2012, p. 172)
Prim(G, v):

1 Intialize V1 = {v}, E1 = ∅, and set G1 = (V1,E1).
2 While there is an edge that connects a vertex in V1 to a vertex not in

V1 do
a Find an edge e = {u, v ′} with smallest weight w(e) such that u ∈ V1

and v ′ /∈ V1.
b Set V1 = V1 ∪ {v ′}, E1 = E1 ∪ {e}, and G1 = (V1,E1).

3 Output G1 = (V1,E1).

Testing Strong Church’s Thesis
Fix a reasonable model of computation, and let M be the class of
machines under that model. An algorithm is a machine M ∈ M.

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 7 / 20



Prim’s algorithm

Prim’s algorithm (Khoussainov and Khoussainova 2012, p. 172)
Prim(G, v):

1 Intialize V1 = {v}, E1 = ∅, and set G1 = (V1,E1).
2 While there is an edge that connects a vertex in V1 to a vertex not in

V1 do
a Find an edge e = {u, v ′} with smallest weight w(e) such that u ∈ V1

and v ′ /∈ V1.
b Set V1 = V1 ∪ {v ′}, E1 = E1 ∪ {e}, and G1 = (V1,E1).

3 Output G1 = (V1,E1).

Which M ∈ M is Prim’s algorithm? Many issues

Step 2a is under-determined

Standard models of computation force us to choose a tie-breaker

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 7 / 20



Prim’s algorithm

Prim’s algorithm (Khoussainov and Khoussainova 2012, p. 172)
Prim(G, v):

1 Intialize V1 = {v}, E1 = ∅, and set G1 = (V1,E1).
2 While there is an edge that connects a vertex in V1 to a vertex not in

V1 do
a Find an edge e = {u, v ′} with smallest weight w(e) such that u ∈ V1

and v ′ /∈ V1.
b Set V1 = V1 ∪ {v ′}, E1 = E1 ∪ {e}, and G1 = (V1,E1).

3 Output G1 = (V1,E1).

Which M ∈ M is Prim’s algorithm? Many issues
Step 2a is under-determined

Standard models of computation force us to choose a tie-breaker

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 7 / 20



Prim’s algorithm

Prim’s algorithm (Khoussainov and Khoussainova 2012, p. 172)
Prim(G, v):

1 Intialize V1 = {v}, E1 = ∅, and set G1 = (V1,E1).
2 While there is an edge that connects a vertex in V1 to a vertex not in

V1 do
a Find an edge e = {u, v ′} with smallest weight w(e) such that u ∈ V1

and v ′ /∈ V1.
b Set V1 = V1 ∪ {v ′}, E1 = E1 ∪ {e}, and G1 = (V1,E1).

3 Output G1 = (V1,E1).

Which M ∈ M is Prim’s algorithm? Many issues
Step 2a is under-determined

Standard models of computation force us to choose a tie-breaker

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 7 / 20



Algorithms-as-Abstracts

Single machines are too concrete.
Take an equivalence relation on M - algorithms are equivalence classes
See Dean (2007, 2016) for details on why this is dubious

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 8 / 20



Out of options?

Goal of project
Find a mathematical object which can adequately play the role of
algorithm, as it’s used in modern computer science practice.

Direct Algorithmic Realism
Strong Church’s Thesis
Algorithms-as-Abstracts

Two questions:
1 Computability theory and complexity theory don’t need algorithms.

Why are we assuming algorithms need them?
2 What do algorithms actually do?

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 9 / 20



Out of options?

Goal of project
Find a mathematical object which can adequately play the role of
algorithm, as it’s used in modern computer science practice.

Direct Algorithmic Realism
Strong Church’s Thesis
Algorithms-as-Abstracts

Two questions:
1 Computability theory and complexity theory don’t need algorithms.

Why are we assuming algorithms need them?
2 What do algorithms actually do?

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 9 / 20



Reconsidering effectiveness

Effectiveness has a strong case in computability theory. What about
algorithmic claims?

Claims about algorithms

1 Program X implements Prim’s algorithm.
2 MergeSort and QuickSort are different sorting algorithms.
3 The Euclidean algorithm is correct for finding the greatest common

divisor of two positive integers.
4 BubbleSort runs in O(n2) time.
5 Shor’s algorithm is a quantum algorithm.

Let’s sequester effectiveness to a requirement on implementations
This matches practice - we can describe uncomputable algorithms!

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 10 / 20



Reconsidering effectiveness

Effectiveness has a strong case in computability theory. What about
algorithmic claims?

Claims about algorithms

1 Program X implements Prim’s algorithm.
2 MergeSort and QuickSort are different sorting algorithms.
3 The Euclidean algorithm is correct for finding the greatest common

divisor of two positive integers.
4 BubbleSort runs in O(n2) time.
5 Shor’s algorithm is a quantum algorithm.

Let’s sequester effectiveness to a requirement on implementations
This matches practice - we can describe uncomputable algorithms!

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 10 / 20



Reconsidering effectiveness

Effectiveness has a strong case in computability theory. What about
algorithmic claims?

Claims about algorithms

1 Program X implements Prim’s algorithm.
2 MergeSort and QuickSort are different sorting algorithms.
3 The Euclidean algorithm is correct for finding the greatest common

divisor of two positive integers.
4 BubbleSort runs in O(n2) time.
5 Shor’s algorithm is a quantum algorithm.

Let’s sequester effectiveness to a requirement on implementations
This matches practice - we can describe uncomputable algorithms!

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 10 / 20



What do algorithms do?

Algorithms, whenever presented, are presented as (potential) solutions
to a given task

Tasks are not functions

G =

v 1

1

3

21

W1

H =

v 1

1

3

21

W2

H =

v 1

1

3

21

W3

H =

v 1

1

3

21

W4

We need an account of tasks.
An algorithm gives you a method for achieving a task

Essentially, an algorithm breaks a task down into sub-tasks, or basic
operations

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 11 / 20



What do algorithms do?

Algorithms, whenever presented, are presented as (potential) solutions
to a given task
Tasks are not functions

G =

v 1

1

3

21

W1

H =

v 1

1

3

21

W2

H =

v 1

1

3

21

W3

H =

v 1

1

3

21

W4

We need an account of tasks.
An algorithm gives you a method for achieving a task

Essentially, an algorithm breaks a task down into sub-tasks, or basic
operations

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 11 / 20



What do algorithms do?

Algorithms, whenever presented, are presented as (potential) solutions
to a given task
Tasks are not functions

G =

v 1

1

3

21

W1

H =

v 1

1

3

21

W2

H =

v 1

1

3

21

W3

H =

v 1

1

3

21

W4

We need an account of tasks.

An algorithm gives you a method for achieving a task
Essentially, an algorithm breaks a task down into sub-tasks, or basic
operations

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 11 / 20



What do algorithms do?

Algorithms, whenever presented, are presented as (potential) solutions
to a given task
Tasks are not functions

G =

v 1

1

3

21

W1

H =

v 1

1

3

21

W2

H =

v 1

1

3

21

W3

H =

v 1

1

3

21

W4

We need an account of tasks.
An algorithm gives you a method for achieving a task

Essentially, an algorithm breaks a task down into sub-tasks, or basic
operations

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 11 / 20



New questions

1 Why take algorithms’ basic operations to be an antecedently fixed set
of functions?

Yiannis Moschovakis (2001) and Yuri Gurevich (2000), among others,
suggest the basic operations of an algorithm should be arbitrary
functions
We can represent an algorithm “on its natural level of abstraction”

2 Why take algorithms’ basic operations to be functions at all?
The tasks algorithms solve are not functions
If we renounce effectiveness, why stick with functions?

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 12 / 20



New questions

1 Why take algorithms’ basic operations to be an antecedently fixed set
of functions?

Yiannis Moschovakis (2001) and Yuri Gurevich (2000), among others,
suggest the basic operations of an algorithm should be arbitrary
functions
We can represent an algorithm “on its natural level of abstraction”

2 Why take algorithms’ basic operations to be functions at all?
The tasks algorithms solve are not functions
If we renounce effectiveness, why stick with functions?

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 12 / 20



New questions

1 Why take algorithms’ basic operations to be an antecedently fixed set
of functions?

Yiannis Moschovakis (2001) and Yuri Gurevich (2000), among others,
suggest the basic operations of an algorithm should be arbitrary
functions
We can represent an algorithm “on its natural level of abstraction”

2 Why take algorithms’ basic operations to be functions at all?
The tasks algorithms solve are not functions
If we renounce effectiveness, why stick with functions?

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 12 / 20



New questions

1 Why take algorithms’ basic operations to be an antecedently fixed set
of functions?

Yiannis Moschovakis (2001) and Yuri Gurevich (2000), among others,
suggest the basic operations of an algorithm should be arbitrary
functions
We can represent an algorithm “on its natural level of abstraction”

2 Why take algorithms’ basic operations to be functions at all?
The tasks algorithms solve are not functions
If we renounce effectiveness, why stick with functions?

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 12 / 20



Key observation
The natural basic steps of an algorithm are themselves tasks

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 13 / 20



The natural basic steps of an algorithm are tasks

Prim’s algorithm (Khoussainov and Khoussainova 2012, p. 172)
Prim(G, v):

1 Intialize V1 = {v}, E1 = ∅, and set G1 = (V1,E1).
2 While there is an edge that connects a vertex in V1 to a vertex not in

V1 do
a Find an edge e = {u, v ′} with smallest weight w(e) such that u ∈ V1

and v ′ /∈ V1.
b Set V1 = V1 ∪ {v ′}, E1 = E1 ∪ {e}, and G1 = (V1,E1).

3 Output G1 = (V1,E1).

Treat tasks and basic operations as the same type of mathematical object:
1 We need an account of a task
2 We need to explain how subtasks can be combined into an algorithm
3 We need to explain how the resulting notion of algorithm relates to

implementations

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 14 / 20



The natural basic steps of an algorithm are tasks

Prim’s algorithm (Khoussainov and Khoussainova 2012, p. 172)
Prim(G, v):

1 Intialize V1 = {v}, E1 = ∅, and set G1 = (V1,E1).
2 While there is an edge that connects a vertex in V1 to a vertex not in

V1 do
a Find an edge e = {u, v ′} with smallest weight w(e) such that u ∈ V1

and v ′ /∈ V1.
b Set V1 = V1 ∪ {v ′}, E1 = E1 ∪ {e}, and G1 = (V1,E1).

3 Output G1 = (V1,E1).

Treat tasks and basic operations as the same type of mathematical object:
1 We need an account of a task
2 We need to explain how subtasks can be combined into an algorithm
3 We need to explain how the resulting notion of algorithm relates to

implementations
Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 14 / 20



Tasks

A task is a specification of desired behaviour.
Formally, a task is a set of sequences of first order models
MST is a set of pairs of first order models
Enumerate Primes is a set of infinite sequences of first order models,
each corresponding to a different enumeration of primes

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 15 / 20



Algorithms

An algorithm is a specification of how to solve a task, assuming the ability
to solve other tasks (i.e. sub-tasks/basic operations)

An algorithm specifies which sub-tasks to carry out, in what order(s)
We take an algorithm as the set of its own traces
Formally, an algorithm is a set of sequences of first order models

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 16 / 20



Implementations
An implementation is a simulation of the algorithm on one of the standard
machine models

Each execution trace s1, s2, . . . sn of M can be split into sub-traces
corresponding to sub-tasks of the algorithm
The sub-traces in each execution trace match the sequence of basic
operations in some sequence of the algorithm

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 17 / 20



Analysis

Claims about algorithms

1 Program X implements Prim’s algorithm.
2 MergeSort and QuickSort are different sorting algorithms.
3 The Euclidean algorithm is correct for finding the greatest common

divisor of two positive integers.
4 BubbleSort runs in O(n2) time.
5 Shor’s algorithm is a quantum algorithm.

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 18 / 20



Summary

Computability theory and complexity theory have no (formal) use for
algorithms
Effectiveness is a desideratum more properly suited to
implementations, rather than algorithms
If we renounce the drive for effectiveness, we can avoid problems
facing many extant accounts of algorithm, while still maintaining
compatibility with computability theory

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 19 / 20



Thank you

Declan Thompson

declan@stanford.edu
www.stanford.edu/~declan

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 20 / 20

www.stanford.edu/~declan


Walter Dean. “What Algorithms Could Not Be”. Rutgers University -
Graduate School - New Brunswick, 2007.
Walter Dean. “Algorithms and the Mathematical Foundations of
Computer Science”. In: Gödel’s Disjunction: The Scope and Limits of
Mathematical Knowledge. First edition. Oxford, United Kingdom:
Oxford University Press, 11 Aug. 2016, pp. 19–66. isbn:
978-0-19-182037-3.
Yuri Gurevich. “Sequential Abstract-State Machines Capture
Sequential Algorithms”. In: ACM Transactions on Computational
Logic 1.1 (1 July 2000), pp. 77–111.
Bakhadyr Khoussainov and Nodira Khoussainova. Lectures on
Discrete Mathematics for Computer Science. Algebra and Discrete
Mathematics v. 3. OCLC: ocn697260707. New Jersey: World
Scientific, 2012. 346 pp. isbn: 978-981-4340-50-2.

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 1 / 2



Yiannis N Moschovakis. “What Is an Algorithm?” In: Mathematics
Unlimited — 2001 and Beyond. Ed. by Björn Engquist and
Wilfried Schmid. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001,
pp. 919–936. isbn: 978-3-642-56478-9.

N. S. Yanofsky. “Towards a Definition of an Algorithm”. In: Journal
of Logic and Computation 21.2 (1 Apr. 2011), pp. 253–286.

Declan Thompson Stanford University Formal Characterisations of Algorithm IHPST, 27 February 2020 2 / 2


	Computability theory
	Difficulties in accounting for algorithms
	Sketch of a new approach
	Appendix
	References


