Local Fact Change Logic, Memory Logic and Expressive Power

Declan Thompson
Stanford University

LIRa, ILLC, 13 February 2020

Talk Overview

(1) Introduction

(2) Local Fact Change
(3) Expressive Power

4 Open Problems

A simple game

...

A simple game

A simple game

...

...

A simple game

Boolean Network Games

Game Definition

- A set of players W
- An accessibility relation $R \subseteq W \times W$
- A goal formula γ

Strategies

A strategy for $s \in W$ is a choice of propositional letters. A strategy profile is a function $V: W \rightarrow 2^{\text {Prop }}$, i.e. a valuation on (W, R).

Outcomes

s wins under V iff $(W, R), V, s \models \gamma$.

Local Fact Change (LFC)

A logic for propositional control in a network.

Local Fact Change (LFC)

A logic for propositional control in a network.
Definition $\left(\mathcal{L}_{L F C}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\diamond \varphi| \bigcirc \varphi
$$

Local Fact Change (LFC)

A logic for propositional control in a network.
Definition $\left(\mathcal{L}_{L F C}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\diamond \varphi| \bigcirc \varphi
$$

Definition (Truth in a model)

Local Fact Change (LFC)

A logic for propositional control in a network.
Definition $\left(\mathcal{L}_{L F C}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\diamond \varphi| \bigcirc \varphi
$$

Definition (Truth in a model)
$\mathfrak{F}, V, s \models p$
iff $\quad p \in V(s)$

Local Fact Change (LFC)

A logic for propositional control in a network.
Definition $\left(\mathcal{L}_{L F C}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\diamond \varphi| \bigcirc \varphi
$$

Definition (Truth in a model)

$$
\begin{array}{lll}
\mathfrak{F}, V, s \models p & \text { iff } & p \in V(s) \\
\mathfrak{F}, V, s \models \neg \varphi & \text { iff } & \mathfrak{F}, V, s \neq \varphi \\
\mathfrak{F}, V, s \models(\varphi \wedge \psi) & \text { iff } & \mathfrak{F}, V, s \models \varphi \text { and } \mathfrak{F}, V, s \models \psi \\
\mathfrak{F}, V, s \models \diamond \varphi & \text { iff } & \mathfrak{F}, V, t=\varphi \text { for some } t \text { with Rst }
\end{array}
$$

Local Fact Change (LFC)

A logic for propositional control in a network.
Definition $\left(\mathcal{L}_{L F C}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\diamond \varphi| \bigcirc \varphi
$$

Definition (Truth in a model)
$\mathfrak{F}, V, s \models p$
iff $\quad p \in V(s)$
$\mathfrak{F}, V, s \models \neg \varphi$
iff $\mathfrak{F}, V, s \not \vDash \varphi$
$\mathfrak{F}, V, s \models(\varphi \wedge \psi)$
iff
$\mathfrak{F}, V, s \models \varphi$ and $\mathfrak{F}, V, s \models \psi$
$\mathfrak{F}, V, s \models \diamond \varphi$
iff
$\mathfrak{F}, V, t \models \varphi$ for some t with Rst
$\mathfrak{F}, V, s \models \bigcirc \varphi$
iff $\mathfrak{F}, V_{A}^{s}, s \models \varphi$ for some $A \subseteq \operatorname{Prop}$

Local Fact Change (LFC)

A logic for propositional control in a network.
Definition $\left(\mathcal{L}_{L F C}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\diamond \varphi| \bigcirc \varphi
$$

Definition (Truth in a model)
$\mathfrak{F}, V, s \models p$
iff $\quad p \in V(s)$
$\mathfrak{F}, V, s \models \neg \varphi$
iff $\mathfrak{F}, V, s \not \vDash \varphi$
$\mathfrak{F}, V, s \models(\varphi \wedge \psi)$
iff $\quad \mathfrak{F}, V, s \models \varphi$ and $\mathfrak{F}, V, s \models \psi$
$\mathfrak{F}, V, s \models \diamond \varphi \quad$ iff $\quad \mathfrak{F}, V, t \models \varphi$ for some t with Rst
$\mathfrak{F}, V, s \models \bigcirc \varphi \quad$ iff $\quad \mathfrak{F}, V_{A}^{s}, s \models \varphi$ for some $A \subseteq$ Prop
changes the valuation but only at the current state.
$\varphi:=\neg \bigcirc \neg \varphi$

Example

S

Example

Example

Example

$$
\begin{aligned}
& s \neq \neg Y \wedge \bigcirc Y \\
& s \neq \bigcirc(Y \leftrightarrow \diamond \neg Y) \\
& s \neq \bigcirc B
\end{aligned}
$$

Example

s

Example

$$
\begin{aligned}
& s \neq \neg Y \wedge \bigcirc Y \\
& s \neq \bigcirc(Y \leftrightarrow \diamond \neg Y) \\
& s \neq \bigcirc B
\end{aligned}
$$

$$
\gamma:=(R \wedge \square \neg R) \vee(Y \wedge \square \neg Y) \vee(G \wedge \square \neg G) \vee(B \wedge \square \neg B)
$$

$$
s \models \bigcirc \gamma \quad s \models \bigcirc(\gamma \wedge \diamond \bigcirc \neg \gamma) \quad s \models \bigcirc \diamond \bigcirc \diamond \bigcirc(\gamma \wedge \square \gamma)
$$

Example

$$
\begin{aligned}
& s \neq \neg Y \wedge \bigcirc Y \\
& s \neq \bigcirc(Y \leftrightarrow \diamond \neg Y) \\
& s \neq \bigcirc B
\end{aligned}
$$

$$
\left.\begin{array}{c}
\gamma:=(R \wedge \square \neg R) \vee(Y \wedge \square \neg Y) \vee(G \wedge \square \neg G) \vee(B \wedge \square \neg B) \\
s
\end{array}\right)
$$

Nash equilibria

V is a Nash equilibrium iff $\mathfrak{F}, V, t=\gamma \vee \bigcirc \neg \gamma$ for all t.

Some initial results about LFC

Fact

$\mathfrak{F}, V, s \models \bigcirc \varphi$ iff $\mathfrak{F}, V_{A}^{s}, s \vDash \varphi$ for some $A \subseteq \operatorname{At}(\varphi)$.
Translation into FOL
Exists, but with exponential blow-up. Examples:

$$
\begin{aligned}
\mathrm{T}(\bigcirc p, x, \emptyset)= & P x \vee \neg P x \\
\mathrm{~T}(\bigcirc \diamond p, x, \emptyset)= & \exists y(R x y \wedge((x=y \rightarrow \neg P x) \wedge(x \neq y \rightarrow P x))) \\
& \vee \exists y(R x y \wedge((x=y \rightarrow P x) \wedge(x \neq y \rightarrow P x)))
\end{aligned}
$$

Some initial results about LFC

Theorem

Model checking for LFC is PSPACE hard.

Proof.

Via reduction from TQBF. Idea: represent variable x_{i} by the value of p in state s_{i}, and give each state a unique label q_{i}. Then translate x_{i} to $\square\left(q_{i} \rightarrow p\right)$.

■ We can show model checking for LFC is in PSPACE by a direct argument, but not via translation to FOL.

Particularised fact change

Sometimes, we may want to only allow a single proposition to change.

Particularised fact change

Sometimes, we may want to only allow a single proposition to change. Let $A \subseteq$ Prop be finite.

$$
\begin{aligned}
\operatorname{Bool}(A) & :=\left\{\bigwedge_{p \in B} p \wedge \neg \bigvee_{p \in A \backslash B} p \mid B \subseteq A\right\} \\
(P) \varphi & :=\bigwedge_{\psi \in \operatorname{Bool}(\operatorname{At}(\varphi) \backslash\{p\})}(\psi \rightarrow \bigcirc(p \wedge \psi \wedge \varphi))
\end{aligned}
$$

Example

$$
(p)(q \vee p)=(q \rightarrow \bigcirc(p \wedge q \wedge(q \vee p))) \wedge(\neg q \rightarrow \bigcirc(p \wedge \neg q \wedge(q \vee p)))
$$

Theorem
$\mathfrak{F}, V, s \models(\mathbb{P}) \varphi$ iff $\mathfrak{F}, V_{A}^{s}, s \models \varphi$, where $A=V(s) \cup\{p\}$.

Particularised fact change

Sometimes, we may want to only allow a single proposition to change. Let $A \subseteq$ Prop be finite.

$$
\begin{aligned}
\operatorname{Bool}(A) & :=\left\{\bigwedge_{p \in B} p \wedge \neg \bigvee_{p \in A \backslash B} p \mid B \subseteq A\right\} \\
\text { (P) } \varphi & :=\bigwedge_{\psi \in \operatorname{Bool}(\operatorname{At}(\varphi) \backslash\{p\})}(\psi \rightarrow \bigcirc(p \wedge \psi \wedge \varphi))
\end{aligned}
$$

Particularised fact change

Sometimes, we may want to only allow a single proposition to change. Let $A \subseteq$ Prop be finite.

$$
\begin{aligned}
\operatorname{Bool}(A) & :=\left\{\bigwedge_{p \in B} p \wedge \neg \bigvee_{p \in A \backslash B} p \mid B \subseteq A\right\} \\
(P) \varphi & :=\bigwedge_{\psi \in \operatorname{Bool}(\operatorname{At}(\varphi) \backslash\{p\})}(\psi \rightarrow \bigcirc(p \wedge \psi \wedge \varphi))
\end{aligned}
$$

Example

$$
(p)(q \vee p)=(q \rightarrow \bigcirc(p \wedge q \wedge(q \vee p))) \wedge(\neg q \rightarrow \bigcirc(p \wedge \neg q \wedge(q \vee p)))
$$

Particularised fact change

Sometimes, we may want to only allow a single proposition to change. Let $A \subseteq$ Prop be finite.

$$
\begin{aligned}
\operatorname{Bool}(A) & :=\left\{\bigwedge_{p \in B} p \wedge \neg \bigvee_{p \in A \backslash B} p \mid B \subseteq A\right\} \\
(P) \varphi & :=\bigwedge_{\psi \in \operatorname{Bool}(\operatorname{At}(\varphi) \backslash\{p\})}(\psi \rightarrow \bigcirc(p \wedge \psi \wedge \varphi))
\end{aligned}
$$

Example

$$
(p)(q \vee p)=(q \rightarrow \bigcirc(p \wedge q \wedge(q \vee p))) \wedge(\neg q \rightarrow \bigcirc(p \wedge \neg q \wedge(q \vee p)))
$$

Theorem
$\mathfrak{F}, V, s \models(P) \varphi$ iff $\mathfrak{F}, V_{A}^{s}, s \models \varphi$, where $A=V(s) \cup\{p\}$.

Talk Overview

(1) Introduction

(2) Local Fact Change
(3) Expressive Power

4) Open Problems

Memory Logic (M)

Definition $\left(\mathcal{L}_{\mathrm{M}}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\diamond \varphi| ® \varphi|\mathbb{}|
$$

Memory Logic (M)

Definition $\left(\mathcal{L}_{\mathrm{M}}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\Delta \varphi| \mathbb{C} \varphi \mid \mathbb{K}
$$

Definition (Truth in a model (Memory Logic))

$$
\mathfrak{F}, V, C, s \models_{\mathrm{M}} \mathbb{『} \varphi \quad \text { iff } \quad \mathfrak{F}, V, C \cup\{s\}, s \models_{\mathrm{M}} \varphi
$$

Memory Logic (M)

Definition $\left(\mathcal{L}_{\mathrm{M}}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\Delta \varphi| \mathbb{C} \varphi \mid \mathbb{K}
$$

Definition (Truth in a model (Memory Logic))

$$
\begin{array}{ll}
\mathfrak{F}, V, C, s \models \mathrm{M} \mathbb{r} \varphi & \text { iff } \\
\mathfrak{F}, V, C, s \models_{\mathrm{M}} \mathbb{K} & \text { iff } \\
\quad s \in C \cup\{s\}, s \models \mathrm{M} \varphi
\end{array}
$$

Memory Logic (M)

Definition $\left(\mathcal{L}_{\mathrm{M}}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\Delta \varphi| \mathbb{C} \varphi \mid \mathbb{K}
$$

Definition (Truth in a model (Memory Logic))

$$
\begin{array}{lll}
\mathfrak{F}, V, C, s \models_{\mathrm{M}}^{\mathbb{C}} \varphi & \text { iff } & \mathfrak{F}, V, C \cup\{s\}, s \models_{\mathrm{M}} \varphi \\
\mathfrak{F}, V, C, s \models_{\mathrm{M}}^{\mathbb{K}} & \text { iff } & s \in C
\end{array}
$$

We say $\mathfrak{F}, V, s \models_{\mathrm{M}} \varphi$ iff $\mathfrak{F}, V, \emptyset, s \models_{\mathrm{M}} \varphi$.

Memory Logic (M)

Examples

$$
\mathbb{C} \diamond \mathbb{C} \diamond \mathbb{k} \quad \circledR \square \neg \mathbb{k} \quad ® \square(p \rightarrow \diamond \mathbb{k})
$$

Memory Logic (M)

Examples

$$
\mathbb{C} \diamond \mathbb{C} \diamond \mathbb{k} \quad \mathbb{C} \square \neg \mathbb{k} \quad \mathbb{}
$$

Theorem
The satisfiability problem for memory logic is undecidable (Mera 2009).

Undecidability of LFC

Theorem
The satisfiability problem for LFC is undecidable.

Undecidability of LFC

Theorem

The satisfiability problem for LFC is undecidable.

Main idea

We translate satisfiability problems for M to satisfiability problems for LFC.

$$
\begin{aligned}
& \tau(p, q)=p \\
& \tau(\neg \varphi, q)=\neg \tau(\varphi, q) \\
& \tau(\mathbb{k}, q)=q \\
& \tau(\varphi \wedge \psi, q)=\tau(\varphi, q) \wedge \tau(\psi, q) \\
& \tau(\diamond \varphi, q)=\diamond \tau(\varphi, q) \\
& \tau(\mathbb{r} \varphi, q)=\text { (q) } \tau(\varphi, q) \text {. } \\
& \mathrm{T}(\varphi, q)=\tau(\varphi, q) \wedge \quad \bigwedge \quad \square^{i} \neg q \\
& 0 \leq i \leq \operatorname{MD}(\varphi)
\end{aligned}
$$

If $q \notin \operatorname{At}(\varphi)$ then φ is satisfiable in M iff $\mathrm{T}(\varphi, q)$ is satisfiable in LFC.
This translation does not preserve truth.

Undecidability of LFC

Theorem

The satisfiability problem for LFC is undecidable.

Main idea

We translate satisfiability problems for M to satisfiability problems for LFC.

$$
\begin{aligned}
\tau(p, q) & =p \\
\tau(\neg \varphi, q) & =\neg \tau(\varphi, q) \\
\tau(\mathbb{K}, q) & =q
\end{aligned}
$$

$$
\begin{aligned}
\tau(\varphi \wedge \psi, q) & =\tau(\varphi, q) \wedge \tau(\psi, q) \\
\tau(\diamond \varphi, q) & =\diamond \tau(\varphi, q) \\
\tau(\mathbb{C} \varphi, q) & =\text { (q) } \tau(\varphi, q)
\end{aligned}
$$

Undecidability of LFC

Theorem

The satisfiability problem for LFC is undecidable.

Main idea

We translate satisfiability problems for M to satisfiability problems for LFC.

$$
\begin{aligned}
& \tau(p, q)=p \quad \tau(\varphi \wedge \psi, q)=\tau(\varphi, q) \wedge \tau(\psi, q) \\
& \tau(\neg \varphi, q)=\neg \tau(\varphi, q) \\
& \tau(\mathbb{k}, q)=q \\
& \tau(\diamond \varphi, q)=\diamond \tau(\varphi, q) \\
& \tau(\mathfrak{r} \varphi, q)=\text { (q) } \tau(\varphi, q) \text {. } \\
& \mathrm{T}(\varphi, q)=\tau(\varphi, q) \wedge \quad \bigwedge \quad \square^{i} \neg q \\
& 0 \leq i \leq \operatorname{MD}(\varphi)
\end{aligned}
$$

Undecidability of LFC

Theorem

The satisfiability problem for LFC is undecidable.

Main idea

We translate satisfiability problems for M to satisfiability problems for LFC.

$$
\begin{array}{rlrl}
\tau(p, q)= & p & \tau(\varphi \wedge \psi, q) & =\tau(\varphi, q) \wedge \tau(\psi, q) \\
\tau(\neg \varphi, q)=\neg \tau(\varphi, q) & \tau(\diamond \varphi, q) & =\diamond \tau(\varphi, q) \\
\tau(\mathbb{K}, q)=q & \tau(\mathfrak{C}) \varphi, q) & =\text { (q) } \tau(\varphi, q) . \\
& \mathrm{T}(\varphi, q)=\tau(\varphi, q) \wedge \bigwedge_{0 \leq i \leq M D(\varphi)} \square^{i} \neg q
\end{array}
$$

If $q \notin \operatorname{At}(\varphi)$ then φ is satisfiable in M iff $\mathrm{T}(\varphi, q)$ is satisfiable in LFC.

Undecidability of LFC

Theorem

The satisfiability problem for LFC is undecidable.

Main idea

We translate satisfiability problems for M to satisfiability problems for LFC.

$$
\begin{aligned}
\tau(p, q)= & p & \tau(\varphi \wedge \psi, q) & =\tau(\varphi, q) \wedge \tau(\psi, q) \\
\tau(\neg \varphi, q)= & \neg \tau(\varphi, q) & \tau(\diamond \varphi, q) & =\diamond \tau(\varphi, q) \\
\tau(\mathbb{k}, q)= & q & \tau(\mathbb{r} \varphi, q) & =\text { (q) } \tau(\varphi, q) .
\end{aligned}
$$

If $q \notin \operatorname{At}(\varphi)$ then φ is satisfiable in M iff $\mathrm{T}(\varphi, q)$ is satisfiable in LFC.
This translation does not preserve truth.

T is not truth preserving

$$
s \longrightarrow t
$$

Suppose $V(t)=$ Prop. Then

$$
s \models_{\mathrm{M}} \mathfrak{r} \diamond \neg \neg \mathbb{k}
$$

$s \mid \neq \mathrm{LFC}$ (q) $\diamond \neg q$
for any q.

T is not truth preserving

$$
s \longrightarrow t
$$

Suppose $V(t)=$ Prop. Then

$$
s \neq \mathrm{M} \upharpoonright \diamond \diamond \neg \mathbb{k} \quad s \notin \mathrm{LFC}(q) \diamond \neg q
$$

for any q.

A question

Does a truth preserving translation exist? What is the relative expressive power of M and LFC?

Comparing expressive power

Definition (\preceq, "no more distinctions")
$A \preceq B$ if every pair of models equivalent under B is equivalent under A.
Definition (\leq, "translation")
Let A, B be logics. $A \leq B$ if there is a translation $\mathfrak{T}: \mathcal{L}_{A} \rightarrow \mathcal{L}_{B}$ such that for all models \mathfrak{M},

$$
\mathfrak{M} \models_{\mathrm{A}} \varphi \quad \text { iff } \quad \mathfrak{M} \models_{\mathrm{B}} \mathfrak{T}(\varphi) .
$$

Comparing expressive power

Definition (\preceq, "no more distinctions")
$A \preceq B$ if every pair of models equivalent under B is equivalent under A.
Definition (\leq, "translation")
Let A, B be logics. $A \leq B$ if there is a translation $\mathfrak{T}: \mathcal{L}_{A} \rightarrow \mathcal{L}_{B}$ such that for all models \mathfrak{M},

$$
\mathfrak{M} \models_{\mathrm{A}} \varphi \quad \text { iff } \quad \mathfrak{M} \models_{\mathrm{B}} \mathfrak{T}(\varphi) .
$$

Fact

If $\mathrm{A} \leq \mathrm{B}$ then $\mathrm{A} \preceq \mathrm{B}$.

Comparing expressive power

Standard approach

To show $A \leq B$, provide a translation. To show $A \npreceq B$, show $A \npreceq B$.

Comparing expressive power

Standard approach

To show $\mathrm{A} \leq \mathrm{B}$, provide a translation.
To show $A \not \subset B$, show $A \npreceq B$.
To show $\mathrm{M} \not \leq \mathrm{LFC}$, it suffices to find a pair of models M can distinguish that LFC cannot.

Ehrenfeucht-Fraïssé Games for LFC

$E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}\right)$

- If $V_{1}\left(s_{1}\right) \neq V_{2}\left(s_{2}\right)$ then Spoiler wins.
- Else if both s_{1} and s_{2} have no neighbours then Duplicator wins.

■ Else Spoiler chooses one of the following two moves:

2 The following occur in order:
1 Spoiler chooses $i \in\{1,2\}$ (j is the other)
2 Spoiler chooses $t_{i} \in W_{i}$ such that $R_{i} s_{i} t_{i}$.
3 If there is no t_{j} with $R_{j} s_{j} t_{j}$, Spoiler wins. Otherwise, Duplicator picks such a t_{j}. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, t_{1}, t_{2}\right)$.

In an infinite game, Duplicator wins.

Ehrenfeucht-Fraïssé Games for LFC

$E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}\right)$

- If $V_{1}\left(s_{1}\right) \neq V_{2}\left(s_{2}\right)$ then Spoiler wins.
- Else if both s_{1} and s_{2} have no neighbours then Duplicator wins.
- Else Spoiler chooses one of the following two moves:

1 Spoiler picks $A \subseteq$ Prop. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}^{s_{1}}, V_{2}^{s_{A}}, s_{1}, s_{2}\right)$.
2 The following occur in order:
1 Spoiler chooses $i \in\{1,2\}$ (j is the other)
2 Spoiler chooses $t_{i} \in W_{i}$ such that $R_{i} s_{i} t_{i}$.
3 If there is no t_{j} with $R_{j} s_{j} t_{j}$, Spoiler wins. Otherwise, Duplicator picks such a t_{j}. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, t_{1}, t_{2}\right)$.

In an infinite game, Duplicator wins.

Ehrenfeucht-Fraïssé Games for LFC

$E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}\right)$

- If $V_{1}\left(s_{1}\right) \neq V_{2}\left(s_{2}\right)$ then Spoiler wins.
- Else if both s_{1} and s_{2} have no neighbours then Duplicator wins.
- Else Spoiler chooses one of the following two moves:

1 Spoiler picks $A \subseteq$ Prop. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}^{s_{1}}, V_{2}^{s_{A}}, s_{1}, s_{2}\right)$.
2 The following occur in order:
1 Spoiler chooses $i \in\{1,2\}$ (j is the other)
2 Spoiler chooses $t_{i} \in W_{i}$ such that $R_{i} s_{i} t_{i}$.
3 If there is no t_{j} with $R_{j} j_{j} t_{j}$, Spoiler wins. Otherwise, Duplicator picks such a t_{j}. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, t_{1}, t_{2}\right)$.

In an infinite game, Duplicator wins.

Fact

If Duplicator has a winning strategy then for all $\varphi, \mathfrak{F}_{1}, V_{1}, s_{1} \models \operatorname{LFC} \varphi$ iff $\mathfrak{F}_{2}, V_{2}, s_{2} \models \operatorname{LFC} \varphi$.
$\mathrm{M} \not \leq \mathrm{LFC}$

We find a pair of models M can distinguish that LFC cannot.
$\mathrm{M} \not \leq \mathrm{LFC}$

We find a pair of models M can distinguish that LFC cannot.
\mathfrak{G}_{1}
$S>$

$\mathrm{M} \not \leq \mathrm{LFC}$

We find a pair of models M can distinguish that LFC cannot.

$\mathrm{M} \not \leq \mathrm{LFC}$

We find a pair of models M can distinguish that LFC cannot.

$\mathrm{M} \not \leq \mathrm{LFC}$

We find a pair of models M can distinguish that LFC cannot.

$\mathrm{M} \not \leq \mathrm{LFC}$

We find a pair of models M can distinguish that LFC cannot.

$$
\mathfrak{G}_{1}, V, s \models_{\mathrm{M}} \mathfrak{r} \diamond \mathbb{k}
$$

$\mathfrak{G}_{2}, V, t \nmid_{\mathrm{M}}(\ulcorner\diamond(k)$
$\mathrm{M} \not \leq \mathrm{LFC}$ (cont.)

Duplicator has a winning strategy in LFC

■ s and t have the same valuation and every node has a neighbour.
■ For every node spoiler picks, there is an unvisited node with the same valuation.

$\mathrm{M} \not \approx \mathrm{LFC}:$ Argument summary

$\mathrm{M} \nless \mathrm{LFC}$

M can distinguish \mathfrak{G}_{1} and \mathfrak{G}_{2} and LFC cannot
$\Rightarrow \mathrm{M}$ Ł LFC
$\Rightarrow \mathrm{M} \not \leq \mathrm{LFC}$

$\mathrm{M} \not \approx \mathrm{LFC}:$ Argument summary

$\mathrm{M} \not \approx \mathrm{LFC}$

M can distinguish \mathfrak{G}_{1} and \mathfrak{G}_{2} and LFC cannot
$\Rightarrow \mathrm{M} 太 \mathrm{LFC}$
$\Rightarrow \mathrm{M} \notin \mathrm{LFC}$

Fact

LFC $\not \subset M$

Proof.

Adaptation of proof in Areces, D. Figueira, S. Figueira, et al. (2011). Uses infinite models to show LFC $\preceq \mathrm{M}$.

$\mathrm{M} \not \approx \mathrm{LFC}:$ Argument summary

$\mathrm{M} \not \approx \mathrm{LFC}$

M can distinguish \mathfrak{G}_{1} and \mathfrak{G}_{2} and LFC cannot
$\Rightarrow \mathrm{M} 太 \mathrm{LFC}$
$\Rightarrow \mathrm{M} \notin \mathrm{LFC}$

Fact

LFC $\not \subset M$

Proof.

Adaptation of proof in Areces, D. Figueira, S. Figueira, et al. (2011). Uses infinite models to show LFC $\preceq \mathrm{M}$.

What about finite models?

Restricted EF Games for LFC

$E F_{R}\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}\right)$

- If $V_{1}\left(s_{1}\right) \neq V_{2}\left(s_{2}\right)$ then Spoiler wins.
- Else if both s_{1} and s_{2} have no neighbours then Duplicator wins.
- Else Spoiler chooses one of the following two moves:

1 Spoiler picks $A \subseteq$ Prop. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}^{s_{1}}, V_{2}^{s_{2}}, s_{1}, s_{2}\right)$.
2 The following occur in order:
1 Spoiler chooses $i \in\{1,2\}$ (j is the other)
2 Spoiler chooses $t_{i} \in W_{i}$ such that $R_{i} s_{i} t_{i}$.
3 If there is no t_{j} with $R_{j} s_{j} t_{j}$, Spoiler wins. Otherwise, Duplicator picks such a t_{j}. We play $\operatorname{EF}\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, t_{1}, t_{2}\right)$.

In an infinite game, Duplicator wins.

Restricted EF Games for LFC

$E F_{R}\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}, B \subseteq\right.$ Prop

- If $V_{1}\left(s_{1}\right) \neq V_{2}\left(s_{2}\right)$ then Spoiler wins.
- Else if both s_{1} and s_{2} have no neighbours then Duplicator wins.
- Else Spoiler chooses one of the following two moves:

1 Spoiler picks $A \subseteq$ Prop. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}^{s_{1}}, V_{2}^{s_{2}}, s_{1}, s_{2}\right)$.
2 The following occur in order:
1 Spoiler chooses $i \in\{1,2\}$ (j is the other)
2 Spoiler chooses $t_{i} \in W_{i}$ such that $R_{i} s_{i} t_{i}$.
3 If there is no t_{j} with $R_{j} s_{j} t_{j}$, Spoiler wins. Otherwise, Duplicator picks such a t_{j}. We play $\operatorname{EF}\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, t_{1}, t_{2}\right)$.

In an infinite game, Duplicator wins.

Restricted EF Games for LFC

$E F_{R}\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}, B, n\right)$

- If $V_{1}\left(s_{1}\right) \neq V_{2}\left(s_{2}\right)$ then Spoiler wins.
- Else if both s_{1} and s_{2} have no neighbours then Duplicator wins.
- Else Spoiler chooses one of the following two moves:

1 Spoiler picks $A \subseteq$ Prop. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}^{s_{1}}, V_{2}^{s_{2}}, s_{1}, s_{2}\right)$.
2 The following occur in order:
1 Spoiler chooses $i \in\{1,2\}$ (j is the other)
2 Spoiler chooses $t_{i} \in W_{i}$ such that $R_{i} s_{i} t_{i}$.
3 If there is no t_{j} with $R_{j} s_{j} t_{j}$, Spoiler wins. Otherwise, Duplicator picks such a t_{j}. We play $\operatorname{EF}\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, t_{1}, t_{2}\right)$.

In an infinite game, Duplicator wins.

Restricted EF Games for LFC

$E F_{R}\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}, B, n\right)$

- If $V_{1}\left(s_{1}\right) \neq V_{2}\left(s_{2}\right)$ then Spoiler wins.
- Else if both s_{1} and s_{2} have no neighbours then Duplicator wins.
- Else Spoiler chooses one of the following two moves:

1 Spoiler picks $A \subseteq B$. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}^{s_{1}}, V_{2}^{s_{2}}, s_{1}, s_{2}\right)$.
2 The following occur in order:
1 Spoiler chooses $i \in\{1,2\}$ (j is the other)
2 Spoiler chooses $t_{i} \in W_{i}$ such that $R_{i} s_{i} t_{i}$.
3 If there is no t_{j} with $R_{j} s_{j} t_{j}$, Spoiler wins. Otherwise, Duplicator picks such a t_{j}. We play $\operatorname{EF}\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, t_{1}, t_{2}\right)$.

In an infinite game, Duplicator wins.

Restricted EF Games for LFC

$E F_{R}\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}, B, n\right)$

- If $V_{1}\left(s_{1}\right) \neq V_{2}\left(s_{2}\right)$ then Spoiler wins.
- Else if both s_{1} and s_{2} have no neighbours then Duplicator wins.
- Else Spoiler chooses one of the following two moves:

1 Spoiler picks $A \subseteq B$. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}^{s_{1}}, V_{2}^{s_{2}}, s_{1}, s_{2}\right)$.
2 The following occur in order:
1 Spoiler chooses $i \in\{1,2\}$ (j is the other)
2 Spoiler chooses $t_{i} \in W_{i}$ such that $R_{i} s_{i} t_{i}$.
3 If there is no t_{j} with $R_{j} s_{j} t_{j}$, Spoiler wins. Otherwise, Duplicator picks such a t_{j}. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, t_{1}, t_{2}\right)$.

If Spoiler does not win in n rounds, Duplicator wins.

Restricted EF Games for LFC

$E F_{R}\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}, B, n\right)$

- If $V_{1}\left(s_{1}\right) \neq V_{2}\left(s_{2}\right)$ then Spoiler wins.
- Else if both s_{1} and s_{2} have no neighbours then Duplicator wins.
- Else Spoiler chooses one of the following two moves:

1 Spoiler picks $A \subseteq B$. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}{ }_{A}^{s_{1}}, V_{2}^{s_{2}}, s_{1}, s_{2}\right)$.
2 The following occur in order:
1 Spoiler chooses $i \in\{1,2\}$ (j is the other)
2 Spoiler chooses $t_{i} \in W_{i}$ such that $R_{i} s_{i} t_{i}$.
3 If there is no t_{j} with $R_{j} j_{j} t_{j}$, Spoiler wins. Otherwise, Duplicator picks such a t_{j}. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, t_{1}, t_{2}\right)$.

If Spoiler does not win in n rounds, Duplicator wins.

Fact

If Duplicator has a winning strategy, $\mathrm{MD}(\varphi) \leq n$ and $\operatorname{At}(\varphi) \subseteq B$, $\mathfrak{F}_{1}, V_{1}, s_{1} \models_{\text {LFC }} \varphi$ iff $\mathfrak{F}_{2}, V_{2}, s_{2} \models_{\text {LFC }} \varphi$.

$\mathrm{M} \not \leq \mathrm{LFC}$ on finite models

Suppose $T: \mathcal{L}_{\mathrm{M}} \rightarrow \mathcal{L}_{L F C}$, and $\psi=T(\mathbb{\rightharpoonup} \diamond \mathbb{k})$.

$\mathrm{M} \not \leq \mathrm{LFC}$ on finite models

Suppose $T: \mathcal{L}_{M} \rightarrow \mathcal{L}_{L F C}$, and $\psi=T(\mathbb{C} \diamond \mathbb{k})$.
Let $B=\operatorname{At}(\psi)$ and $n=\operatorname{MD}(\psi)$.

$\mathrm{M} \not \leq \mathrm{LFC}$ on finite models

Suppose $T: \mathcal{L}_{M} \rightarrow \mathcal{L}_{L F C}$, and $\psi=T(\mathbb{C} \Delta(\mathbb{k})$.
Let $B=\operatorname{At}(\psi)$ and $n=\operatorname{MD}(\psi)$.

$\mathrm{M} \not \leq \mathrm{LFC}$ on finite models

Suppose $T: \mathcal{L}_{M} \rightarrow \mathcal{L}_{L F C}$, and $\psi=T(\mathbb{C} \diamond(\mathbb{k})$.
Let $B=\operatorname{At}(\psi)$ and $n=\operatorname{MD}(\psi)$.

- Duplicator has the same winning strategy as before in $E F_{R}\left(\mathfrak{G}_{1}, \mathfrak{G}_{2}, V_{1}, V_{2}, s, t, B, n\right)$.

$\mathrm{M} \not \approx$ LFC on finite models: Argument summary

$\mathrm{M} \not \leq \mathrm{LFC}$ on finite models
Suppose $T: \mathcal{L}_{\mathrm{M}} \rightarrow \mathcal{L}_{L F C}$.
Construct \mathfrak{G}_{1} and \mathfrak{G}_{2}
$® \diamond \mathbb{k}$ distinguishes \mathfrak{G}_{1} and \mathfrak{G}_{2} but $T(\mathbb{r} \diamond \mathbb{k})$ does not
$\Rightarrow \mathrm{T}$ is not truth preserving on finite models
\Rightarrow There is no translation $T: \mathcal{L}_{\mathrm{M}} \rightarrow \mathcal{L}_{L F C}$ that preserves truth on finite models
$\Rightarrow \mathrm{M} \not \leq \mathrm{LFC}$ on finite models

$\mathrm{M} \not \approx$ LFC on finite models: Argument summary

$\mathrm{M} \not \leq \mathrm{LFC}$ on finite models
Suppose $T: \mathcal{L}_{\mathrm{M}} \rightarrow \mathcal{L}_{L F C}$.
Construct \mathfrak{G}_{1} and \mathfrak{G}_{2}
$® \diamond\left(\mathbb{K}\right.$ distinguishes \mathfrak{G}_{1} and \mathfrak{G}_{2} but $T(\mathbb{r} \diamond \mathbb{k})$ does not
$\Rightarrow \mathrm{T}$ is not truth preserving on finite models
\Rightarrow There is no translation $T: \mathcal{L}_{\mathrm{M}} \rightarrow \mathcal{L}_{L F C}$ that preserves truth on finite models
$\Rightarrow \mathrm{M} \not \leq \mathrm{LFC}$ on finite models

We bypassed \preceq.

BUT!

Fix n and $B \subsetneq$ Prop. Take $q \notin B$.

BUT!

Fix n and $B \subsetneq$ Prop. Take $q \notin B$.

- So LFC can distinguish all our countermodels.

$\mathrm{M} \preceq \mathrm{LFC}$ on finite models

Lemma

For finite pointed models $\mathfrak{F}_{1}, V_{1}, s_{1}$ and $\mathfrak{F}_{2}, V_{2}, s_{2}$, the following are equivalent:
1 Duplicator has a winning strategy in $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}\right)$.
2 For every $\varphi \in \mathcal{L}_{\text {LFC }}$ we have $\mathfrak{F}_{1}, V_{1}, s_{1}=\operatorname{LFC} \varphi$ iff $\mathfrak{F}_{2}, V_{2}, s_{2}=\operatorname{LFC} \varphi$.

Theorem

If Duplicator has a winning strategy in $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}\right)$, with $\mathfrak{F}_{1}, \mathfrak{F}_{2}$ finite, then for all $\varphi \in \mathcal{L}_{\mathrm{M}}$,

$$
\mathfrak{F}_{1}, V_{1}, s_{1} \models \mathrm{M} \varphi \quad \text { iff } \quad \mathfrak{F}_{2}, V_{2}, s_{2} \models \mathrm{M} \varphi .
$$

Proof.

Via a version of bisimulation for LFC.

Summary

Corollary

$\mathrm{M} \preceq \mathrm{LFC}$ on finite models.

What do we know?
■ M and LFC are incomparable in general.

- $\mathrm{M} \not \leq L F C$ and LFC $\not \leq M$ for finite models.
- M \preceq LFC for finite models.

Open questions

Expressive Power

- Is LFC $\preceq \mathrm{M}$ on finite models?

■ What other situations do \leq and \preceq give different judgements?
■ What other notions of relative expressive power are interesting?

- Relationship with other logics (e.g. Hybrid logic)?

General

- What is the exact relationship between LFC and Nash equilibria for BNGs? Can we say the logic of Nash equilibria is undecidable?
- What is a natural, efficient translation of LFC to FOL?
- Axiomatisation?
- Tableau system? (c.f. Areces, D. Figueira, Gorín, et al. 2009)

Obtaining decidability

How can we make LFC decidable?

■ Restrict the class of models.

- For DAGs, LFC is decidable.
- Modify \bigcirc.
- Only a subset of valuations are available (c.f. generalised assignment models): remains undecidable.
- \bigcirc changes the valuation somewhere (maybe not here): conjecture remains undecidable.
- \bigcirc updates all bisimilar points: conjecture becomes decidable.

Thank you

Areces, Carlos, Diego Figueira, Santiago Figueira, et al. (June 2011). "The Expressive Power of Memory Logics". In: The Review of Symbolic Logic 4.02, pp. 290-318.

Areces, Carlos, Diego Figueira, Daniel Gorín, et al. (2009). "Tableaux and Model Checking for Memory Logics". In: Automated Reasoning with Analytic Tableaux and Related Methods. Ed. by Martin Giese and Arild Waaler. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 47-61. ISBN: 978-3-642-02716-1.
Balbiani, Philippe, Andreas Herzig, and Nicolas Troquard (2013).
"Dynamic Logic of Propositional Assignments: A Well-Behaved Variant of PDL". In: Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS '13. Washington, DC, USA: IEEE Computer Society, pp. 143-152. ISBN: 978-0-7695-5020-6. Harrenstein, Paul et al. (2001). "Boolean Games". In: Proceedings of the 8th Conference on Theoretical Aspects of Rationality and Knowledge. Morgan Kaufmann Publishers Inc., pp. 287-298.

Mera, Sergio Fernando (2009). "Modal Memory Logics". PhD Thesis.
Buenos Aires: Universidad de Buenos Aires. 165 pp.
Tiomkin, M. L. and J. A. Makowsky (Jan. 1, 1985). "Propositional
Dynamic Logic with Local Assignment". In: Theoretical Computer Science 36, pp. 71-87.
Van der Hoek, Wiebe and Michael Wooldridge (May 2005). "On the Logic of Cooperation and Propositional Control". In: Artificial Intelligence 164.1-2, pp. 81-119.

Related Work

- Propositional formulae, with agents controlling a subset of the atomic variables: Coalition Logics of Propositional Control (van der Hoek and Wooldridge 2005), Boolean Games (Harrenstein et al. 2001).

Related Work

- Propositional formulae, with agents controlling a subset of the atomic variables: Coalition Logics of Propositional Control (van der Hoek and Wooldridge 2005), Boolean Games (Harrenstein et al. 2001).
- Network structure, changes to global truth value of proposition: Public Announcement Logic.

Related Work

- Propositional formulae, with agents controlling a subset of the atomic variables: Coalition Logics of Propositional Control (van der Hoek and Wooldridge 2005), Boolean Games (Harrenstein et al. 2001).
■ Network structure, changes to global truth value of proposition: Public Announcement Logic.
- PDL variant where atomic programs are propositional assignments: Dynamic Logic of Propositional Assignments (Balbiani, Herzig, and Troquard 2013)

Related Work

- Propositional formulae, with agents controlling a subset of the atomic variables: Coalition Logics of Propositional Control (van der Hoek and Wooldridge 2005), Boolean Games (Harrenstein et al. 2001).
■ Network structure, changes to global truth value of proposition: Public Announcement Logic.
- PDL variant where atomic programs are propositional assignments: Dynamic Logic of Propositional Assignments (Balbiani, Herzig, and Troquard 2013)
■ PDL with local and global assignments to propositional variables: PDL+GLA (Tiomkin and Makowsky 1985)

Translation into FOL

$$
\begin{aligned}
\mathrm{T}(\neg \varphi, x, V) & :=\neg \mathrm{T}(\varphi, x, V) \\
\mathrm{T}(\varphi \vee \psi, x, V) & :=\mathrm{T}(\varphi, x, V) \vee \mathrm{T}(\psi, x, V) \\
\mathrm{T}(\diamond \varphi, x, V) & :=\exists y(R x y \wedge \mathrm{~T}(\varphi, y, V)) \quad \text { [y is new] } \\
\mathrm{T}(\bigcirc \varphi, x, V) & :=\bigvee_{A \subseteq A t(\varphi)} \mathrm{T}\left(\varphi, x, V_{A}^{x}\right) \\
\mathrm{T}(p, x, V) & := \begin{cases}\neg P x & \text { if } p \in V(y) \text { for the most recent } y \\
& \text { such that } x=y, V(y) \text { defined } \\
P x & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\left.\models \square^{n} p \leftrightarrow\left(\bigcirc \square^{n} p \vee\left(\rho\left(p \leftrightarrow \square^{n} p\right) \wedge p\right)\right)\right)
$$

Definition (Isobisimulation)

Let $\mathfrak{M}_{1}=\left(W_{1}, R_{1}, V_{1}\right)$ and $\mathfrak{M}_{2}=\left(W_{2}, R_{2}, V_{2}\right)$. A relation $Z \subseteq W_{1} \times W_{2}$ is an isobisimulation if the following clauses hold:
Non-empty $Z \neq \emptyset$
Agree If $s_{1} Z s_{2}$ then $V_{1}\left(s_{1}\right)=V_{2}\left(s_{2}\right)$.
Zig If $s_{1} Z s_{2}$ and $R_{1} s_{1} t_{1}$ then there is t_{2} with $R_{2} s_{2} t_{2}$.
Zag If $s_{1} Z s_{2}$ and $R_{2} s_{2} t_{2}$ then there is t_{1} with $R_{1} s_{1} t_{1}$.
Isomorphism If $s_{1} Z s_{2}$ then there is an isomorphism

$$
f: S C C\left(s_{1}\right) \rightarrow S C C\left(s_{2}\right) \text { such that } f\left(s_{1}\right)=s_{2} .
$$

Boolean Games

- We have a set Prop of propositions.

■ Each player controls a subset of Prop.

- Each player s has a formula γ_{s} of propositional logic as their goal.

■ By choosing the valuation on their propositions, s tries to make γ_{s} true.

Boolean Network Games

- Players are arranged in a network.
- Each player controls all the propositions at their position.
- Each player s has a formula γ_{s} of modal logic as their goal.

■ By choosing the valuation at their position, s tries to make γ_{s} true.

BNGs: Strategies and equilibria

Definition (Strategy (profile))

A strategy is a subset of Prop. A strategy profile is a function $V: W \rightarrow 2^{\text {Prop }}$.

BNGs: Strategies and equilibria

Definition (Strategy (profile))

A strategy is a subset of Prop. A strategy profile is a function $V: W \rightarrow 2^{\text {Prop }}$.

Definition (Nash equilibrium)
A strategy profile V is a Nash equilibrium if there is no player who can do better by changing strategy.

BNGs: Strategies and equilibria

Definition (Strategy (profile))

A strategy is a subset of Prop. A strategy profile is a function $V: W \rightarrow 2^{\text {Prop }}$.

Definition (Nash equilibrium)

A strategy profile V is a Nash equilibrium if there is no player who can do better by changing strategy.

How can we make this definition more precise? We need a logical way to talk about changing strategies.

Equilibria and other properties

■ V is a Nash equilibrium iff $\mathfrak{F}, V, s \models \bigcirc \gamma_{s} \rightarrow \gamma_{s}$ for every player s.

Equilibria and other properties

■ V is a Nash equilibrium iff $\mathfrak{F}, V, s \models \bigcirc \gamma_{s} \rightarrow \gamma_{s}$ for every player s.
■ For propositional $\varphi, \neg \bigcirc \neg \varphi$ is true iff φ is valid.

Equilibria and other properties

■ V is a Nash equilibrium iff $\mathfrak{F}, V, s \models \bigcirc \gamma_{s} \rightarrow \gamma_{s}$ for every player s.
■ For propositional $\varphi, \neg \bigcirc \neg \varphi$ is true iff φ is valid.

- LFC is strictly more expressive than basic modal logic: $\bigcirc \diamond p \rightarrow \diamond p$ is valid on a frame iff it is irreflexive.

Equilibria and other properties

■ V is a Nash equilibrium iff $\mathfrak{F}, V, s \models \bigcirc \gamma_{s} \rightarrow \gamma_{s}$ for every player s.
■ For propositional $\varphi, \neg \bigcirc \neg \varphi$ is true iff φ is valid.

- LFC is strictly more expressive than basic modal logic: $\bigcirc \diamond p \rightarrow \diamond p$ is valid on a frame iff it is irreflexive.
■ How expressive is it?

