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Boolean Network Games

Game Definition

A set of players W
An accessibility relation R ⊆ W × W
A goal formula γ

Strategies
A strategy for s ∈ W is a choice of propositional letters. A strategy profile
is a function V : W → 2Prop, i.e. a valuation on (W ,R).

Outcomes
s wins under V iff (W ,R),V , s |= γ.
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Local Fact Change (LFC)

A logic for propositional control in a network.

Definition (LLFC)

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | ♦ϕ | ϕ

Definition (Truth in a model)
F,V , s |= p iff p ∈ V (s)
F,V , s |= ¬ϕ iff F,V , s 6|= ϕ
F,V , s |= (ϕ ∧ ψ) iff F,V , s |= ϕ and F,V , s |= ψ
F,V , s |= ♦ϕ iff F,V , t |= ϕ for some t with Rst
F,V , s |= ϕ iff F,V s

A, s |= ϕ for some A ⊆ Prop

changes the valuation but only at the current state.
ϕ := ¬ ¬ϕ
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Example

s

γ := (R ∧�¬R) ∨ (Y ∧�¬Y ) ∨ (G ∧�¬G) ∨ (B ∧�¬B)

s |= γ s |= (γ ∧ ♦ ¬γ) s |= ♦ ♦ (γ ∧�γ)

Nash equilibria
V is a Nash equilibrium iff F,V , t |= γ ∨ ¬γ for all t.

Declan Thompson Stanford University LFC, M and Expressive Power LIRa, ILLC, 13 February 2020 6 / 29



Example

s

s |= ¬Y ∧ Y

γ := (R ∧�¬R) ∨ (Y ∧�¬Y ) ∨ (G ∧�¬G) ∨ (B ∧�¬B)

s |= γ s |= (γ ∧ ♦ ¬γ) s |= ♦ ♦ (γ ∧�γ)

Nash equilibria
V is a Nash equilibrium iff F,V , t |= γ ∨ ¬γ for all t.

Declan Thompson Stanford University LFC, M and Expressive Power LIRa, ILLC, 13 February 2020 6 / 29



Example

s

s |= ¬Y ∧ Y
s |= (Y ↔ ♦¬Y )

γ := (R ∧�¬R) ∨ (Y ∧�¬Y ) ∨ (G ∧�¬G) ∨ (B ∧�¬B)

s |= γ s |= (γ ∧ ♦ ¬γ) s |= ♦ ♦ (γ ∧�γ)

Nash equilibria
V is a Nash equilibrium iff F,V , t |= γ ∨ ¬γ for all t.

Declan Thompson Stanford University LFC, M and Expressive Power LIRa, ILLC, 13 February 2020 6 / 29



Example

s

s |= ¬Y ∧ Y
s |= (Y ↔ ♦¬Y )

s |= ♦B

γ := (R ∧�¬R) ∨ (Y ∧�¬Y ) ∨ (G ∧�¬G) ∨ (B ∧�¬B)

s |= γ s |= (γ ∧ ♦ ¬γ) s |= ♦ ♦ (γ ∧�γ)

Nash equilibria
V is a Nash equilibrium iff F,V , t |= γ ∨ ¬γ for all t.

Declan Thompson Stanford University LFC, M and Expressive Power LIRa, ILLC, 13 February 2020 6 / 29



Example

s

s |= ¬Y ∧ Y
s |= (Y ↔ ♦¬Y )

s |= ♦B

γ := (R ∧�¬R) ∨ (Y ∧�¬Y ) ∨ (G ∧�¬G) ∨ (B ∧�¬B)

s |= γ s |= (γ ∧ ♦ ¬γ) s |= ♦ ♦ (γ ∧�γ)

Nash equilibria
V is a Nash equilibrium iff F,V , t |= γ ∨ ¬γ for all t.

Declan Thompson Stanford University LFC, M and Expressive Power LIRa, ILLC, 13 February 2020 6 / 29



Example

s

s |= ¬Y ∧ Y
s |= (Y ↔ ♦¬Y )

s |= ♦B

γ := (R ∧�¬R) ∨ (Y ∧�¬Y ) ∨ (G ∧�¬G) ∨ (B ∧�¬B)

s |= γ s |= (γ ∧ ♦ ¬γ) s |= ♦ ♦ (γ ∧�γ)

Nash equilibria
V is a Nash equilibrium iff F,V , t |= γ ∨ ¬γ for all t.

Declan Thompson Stanford University LFC, M and Expressive Power LIRa, ILLC, 13 February 2020 6 / 29



Example

s

s |= ¬Y ∧ Y
s |= (Y ↔ ♦¬Y )

s |= ♦B

γ := (R ∧�¬R) ∨ (Y ∧�¬Y ) ∨ (G ∧�¬G) ∨ (B ∧�¬B)

s |= γ s |= (γ ∧ ♦ ¬γ) s |= ♦ ♦ (γ ∧�γ)

Nash equilibria
V is a Nash equilibrium iff F,V , t |= γ ∨ ¬γ for all t.

Declan Thompson Stanford University LFC, M and Expressive Power LIRa, ILLC, 13 February 2020 6 / 29



Some initial results about LFC

Fact
F,V , s |= ϕ iff F,V s

A, s |= ϕ for some A ⊆ At(ϕ).

Translation into FOL
Exists, but with exponential blow-up. Examples:

T( p, x , ∅) =Px ∨ ¬Px
T( ♦p, x , ∅) =∃y(Rxy ∧ ((x = y → ¬Px) ∧ (x 6= y → Px)))

∨ ∃y(Rxy ∧ ((x = y → Px) ∧ (x 6= y → Px)))
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Some initial results about LFC

Theorem
Model checking for LFC is PSPACE hard.

Proof.
Via reduction from TQBF. Idea: represent variable xi by the value of p in
state si , and give each state a unique label qi . Then translate xi to
�(qi → p).

We can show model checking for LFC is in PSPACE by a direct
argument, but not via translation to FOL.
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Particularised fact change
Sometimes, we may want to only allow a single proposition to change.

Let
A ⊆ Prop be finite.

Bool(A) := {
∧

p∈B
p ∧ ¬

∨
p∈A\B

p | B ⊆ A}

p ϕ :=
∧

ψ∈Bool(At(ϕ)\{p})
(ψ → (p ∧ ψ ∧ ϕ))

Example

p (q ∨ p) = (q → (p ∧ q ∧ (q ∨ p))) ∧ (¬q → (p ∧ ¬q ∧ (q ∨ p)))

Theorem
F,V , s |= p ϕ iff F,V s

A, s |= ϕ, where A = V (s) ∪ {p}.
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Memory Logic (M)

Definition (LM)

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | ♦ϕ | r ϕ | k

Definition (Truth in a model (Memory Logic))

F,V ,C , s |=M r ϕ iff F,V ,C ∪ {s}, s |=M ϕ

F,V ,C , s |=M k iff s ∈ C

We say F,V , s |=M ϕ iff F,V , ∅, s |=M ϕ.
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Memory Logic (M)

Examples

r ♦ r ♦ k r �¬ k r �(p → ♦ k )

Theorem
The satisfiability problem for memory logic is undecidable (Mera 2009).

Declan Thompson Stanford University LFC, M and Expressive Power LIRa, ILLC, 13 February 2020 12 / 29



Memory Logic (M)

Examples

r ♦ r ♦ k r �¬ k r �(p → ♦ k )

Theorem
The satisfiability problem for memory logic is undecidable (Mera 2009).

Declan Thompson Stanford University LFC, M and Expressive Power LIRa, ILLC, 13 February 2020 12 / 29



Undecidability of LFC

Theorem
The satisfiability problem for LFC is undecidable.

Main idea
We translate satisfiability problems for M to satisfiability problems for LFC.

τ(p, q) = p τ(ϕ ∧ ψ, q) = τ(ϕ, q) ∧ τ(ψ, q)
τ(¬ϕ, q) = ¬τ(ϕ, q) τ(♦ϕ, q) = ♦τ(ϕ, q)
τ( k , q) = q τ( r ϕ, q) = q τ(ϕ, q).

T(ϕ, q) = τ(ϕ, q) ∧
∧

0≤i≤MD(ϕ)

�i¬q

If q /∈ At(ϕ) then ϕ is satisfiable in M iff T(ϕ, q) is satisfiable in LFC.

This translation does not preserve truth.
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T is not truth preserving

s t

Suppose V (t) = Prop. Then

s |=M r ♦¬ k s 6|=LFC q ♦¬q

for any q.

A question
Does a truth preserving translation exist? What is the relative expressive
power of M and LFC?
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Comparing expressive power

Definition (�, “no more distinctions”)
A � B if every pair of models equivalent under B is equivalent under A.

Definition (≤, “translation”)
Let A,B be logics. A ≤ B if there is a translation T : LA → LB such that
for all models M,

M |=A ϕ iff M |=B T(ϕ).

Fact
If A ≤ B then A � B.
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Comparing expressive power

Standard approach
To show A ≤ B, provide a translation.
To show A 6≤ B, show A 6� B.

To show M 6≤ LFC, it suffices to find a pair of models M can distinguish
that LFC cannot.
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Ehrenfeucht-Fraïssé Games for LFC

EF (F1,F2,V1,V2, s1, s2)

If V1(s1) 6= V2(s2) then Spoiler wins.
Else if both s1 and s2 have no neighbours then Duplicator wins.
Else Spoiler chooses one of the following two moves:

1 Spoiler picks A ⊆ Prop. We play EF (F1,F2,V1
s1
A ,V2

s2
A , s1, s2).

2 The following occur in order:
1 Spoiler chooses i ∈ {1, 2} (j is the other)
2 Spoiler chooses ti ∈ Wi such that Risi ti .
3 If there is no tj with Rjsjtj , Spoiler wins. Otherwise, Duplicator picks

such a tj . We play EF (F1,F2,V1,V2, t1, t2).

In an infinite game, Duplicator wins.

Fact
If Duplicator has a winning strategy then for all ϕ, F1,V1, s1 |=LFC ϕ iff
F2,V2, s2 |=LFC ϕ.
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s1
A ,V2

s2
A , s1, s2).

2 The following occur in order:
1 Spoiler chooses i ∈ {1, 2} (j is the other)
2 Spoiler chooses ti ∈ Wi such that Risi ti .
3 If there is no tj with Rjsjtj , Spoiler wins. Otherwise, Duplicator picks

such a tj . We play EF (F1,F2,V1,V2, t1, t2).

In an infinite game, Duplicator wins.

Fact
If Duplicator has a winning strategy then for all ϕ, F1,V1, s1 |=LFC ϕ iff
F2,V2, s2 |=LFC ϕ.
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M 6≤ LFC

We find a pair of models M can distinguish that LFC cannot.

G1 s

2Prop2Prop2Prop

ω

G1,V , s |=M r ♦ k

G2 t

2Prop2Prop2Prop

ω

G2,V , t 6|=M r ♦ k
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M 6≤ LFC (cont.)

G1 s

2Prop2Prop2Prop

ω

G2 t

2Prop2Prop2Prop

ω

Duplicator has a winning strategy in LFC

s and t have the same valuation and every node has a neighbour.
For every node spoiler picks, there is an unvisited node with the same
valuation.
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M 6≤ LFC: Argument summary

M 6≤ LFC

M can distinguish G1 and G2 and LFC cannot
⇒ M 6� LFC
⇒ M 6≤ LFC

Fact
LFC 6≤ M

Proof.
Adaptation of proof in Areces, D. Figueira, S. Figueira, et al. (2011). Uses
infinite models to show LFC 6� M.

What about finite models?
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Restricted EF Games for LFC

EFR(F1,F2,V1,V2, s1, s2)

If V1(s1) 6= V2(s2) then Spoiler wins.
Else if both s1 and s2 have no neighbours then Duplicator wins.
Else Spoiler chooses one of the following two moves:

1 Spoiler picks A ⊆ Prop. We play EF (F1,F2,V1
s1
A ,V2

s2
A , s1, s2).

2 The following occur in order:
1 Spoiler chooses i ∈ {1, 2} (j is the other)
2 Spoiler chooses ti ∈ Wi such that Risi ti .
3 If there is no tj with Rjsjtj , Spoiler wins. Otherwise, Duplicator picks

such a tj . We play EF (F1,F2,V1,V2, t1, t2).

In an infinite game, Duplicator wins.

Fact
If Duplicator has a winning strategy, MD(ϕ) ≤ n and At(ϕ) ⊆ B,
F1,V1, s1 |=LFC ϕ iff F2,V2, s2 |=LFC ϕ.
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M 6≤ LFC on finite models

Suppose T : LM → LLFC , and ψ = T ( r ♦ k ).

Let B = At(ψ) and n = MD(ψ).

G1 s

2B2B2B2B

n

G2 t

2B2B2B2B

n

Duplicator has the same winning strategy as before in
EFR(G1,G2,V1,V2, s, t,B, n).
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M 6≤ LFC on finite models: Argument summary

M 6≤ LFC on finite models

Suppose T : LM → LLFC .
Construct G1 and G2
r ♦ k distinguishes G1 and G2 but T ( r ♦ k ) does not

⇒ T is not truth preserving on finite models
⇒ There is no translation T : LM → LLFC that preserves truth on finite

models
⇒ M 6≤ LFC on finite models

We bypassed �.
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BUT!
Fix n and B ( Prop. Take q /∈ B.

G1 s

2B2B2B2B

n

G1, s |=LFC ♦q

G2 t

2B2B2B2B

n

G2, t 6|=LFC ♦q

So LFC can distinguish all our countermodels.
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M � LFC on finite models

Lemma
For finite pointed models F1,V1, s1 and F2,V2, s2, the following are
equivalent:

1 Duplicator has a winning strategy in EF (F1,F2,V1,V2, s1, s2).
2 For every ϕ ∈ LLFC we have F1,V1, s1 |=LFC ϕ iff F2,V2, s2 |=LFC ϕ.

Theorem
If Duplicator has a winning strategy in EF (F1,F2,V1,V2, s1, s2), with
F1,F2 finite, then for all ϕ ∈ LM,

F1,V1, s1 |=M ϕ iff F2,V2, s2 |=M ϕ.

Proof.
Via a version of bisimulation for LFC.
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Summary

Corollary
M � LFC on finite models.

What do we know?

M and LFC are incomparable in general.
M 6≤ LFC and LFC 6≤ M for finite models.
M � LFC for finite models.
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Open questions

Expressive Power

Is LFC � M on finite models?
What other situations do ≤ and � give different judgements?
What other notions of relative expressive power are interesting?
Relationship with other logics (e.g. Hybrid logic)?

General

What is the exact relationship between LFC and Nash equilibria for
BNGs? Can we say the logic of Nash equilibria is undecidable?
What is a natural, efficient translation of LFC to FOL?
Axiomatisation?
Tableau system? (c.f. Areces, D. Figueira, Gorín, et al. 2009)
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Obtaining decidability

How can we make LFC decidable?

Restrict the class of models.
For DAGs, LFC is decidable.

Modify .
Only a subset of valuations are available (c.f. generalised assignment
models): remains undecidable.

changes the valuation somewhere (maybe not here): conjecture
remains undecidable.

updates all bisimilar points: conjecture becomes decidable.
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Thank you
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Related Work

Propositional formulae, with agents controlling a subset of the atomic
variables: Coalition Logics of Propositional Control (van der Hoek
and Wooldridge 2005), Boolean Games (Harrenstein et al. 2001).

Network structure, changes to global truth value of proposition:
Public Announcement Logic.
PDL variant where atomic programs are propositional assignments:
Dynamic Logic of Propositional Assignments (Balbiani, Herzig, and
Troquard 2013)
PDL with local and global assignments to propositional variables:
PDL+GLA (Tiomkin and Makowsky 1985)
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Translation into FOL

T(¬ϕ, x ,V ) := ¬T(ϕ, x ,V )

T(ϕ ∨ ψ, x ,V ) := T(ϕ, x ,V ) ∨ T(ψ, x ,V )

T(♦ϕ, x ,V ) := ∃y(Rxy ∧ T(ϕ, y ,V )) [y is new]

T( ϕ, x ,V ) :=
∨

A⊆At(ϕ)
T(ϕ, x ,V x

A)

T(p, x ,V ) :=


¬Px if p ∈ V (y) for the most recent y

such that x = y , V (y) defined
Px otherwise
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|= �np ↔ ( �np ∨ ( (p ↔ �np) ∧ p)))
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Definition (Isobisimulation)
Let M1 = (W1,R1,V1) and M2 = (W2,R2,V2). A relation Z ⊆ W1 × W2
is an isobisimulation if the following clauses hold:

Non-empty Z 6= ∅
Agree If s1Zs2 then V1(s1) = V2(s2).

Zig If s1Zs2 and R1s1t1 then there is t2 with R2s2t2.
Zag If s1Zs2 and R2s2t2 then there is t1 with R1s1t1.

Isomorphism If s1Zs2 then there is an isomorphism
f : SCC(s1) → SCC(s2) such that f (s1) = s2.
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Boolean Games

We have a set Prop of propositions.
Each player controls a subset of Prop.
Each player s has a formula γs of propositional logic as their goal.
By choosing the valuation on their propositions, s tries to make γs
true.
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Boolean Network Games

Players are arranged in a network.
Each player controls all the propositions at their position.
Each player s has a formula γs of modal logic as their goal.
By choosing the valuation at their position, s tries to make γs true.
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BNGs: Strategies and equilibria

Definition (Strategy (profile))
A strategy is a subset of Prop. A strategy profile is a function
V : W → 2Prop.

Definition (Nash equilibrium)
A strategy profile V is a Nash equilibrium if there is no player who can do
better by changing strategy.

How can we make this definition more precise? We need a logical way to
talk about changing strategies.
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Equilibria and other properties

V is a Nash equilibrium iff F,V , s |= γs → γs for every player s.

For propositional ϕ, ¬ ¬ϕ is true iff ϕ is valid.
LFC is strictly more expressive than basic modal logic: ♦p → ♦p is
valid on a frame iff it is irreflexive.
How expressive is it?
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