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What are algorithms?

There is no algorithm to decide whether
the domain of Φx is empty.

[3, Proposition 2.1.4]

If G is a connected weighted graph then
the Prim(G, v)-algorithm produces a
minimum spanning tree for G.

[6, Theorem 17.3]

“They’re like a recipe!”
Turing machines!

Or some other classical model of computation.

Programs!

“A concept like ‘abstract algorithm’ without reference to any algorithmic language does not
exist. In order to specify an algorithm one has to give the specifications in some algorithmic
language.” [5, p. 654]

Unambiguous, deterministic, clear sequences of instructions for achieving some task.
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What are algorithms?

Mergesort sorts a given list of numbers by
first dividing them into two equal halves,
sorting each half separately by recursion,
and then combining the results of these
recursive calls–in the form of the two
sorted halves–using the linear time
algorithm for merging sorted lists that we
saw in Chapter 2. [7, p. 210]
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…is that really what algorithms are?

“Unambiguous, deterministic, clear sequences of instructions for achieving some task.”

Which model of computation should be chosen? What are the primitive objects?
Algorithms need not be fully determined.
Programs are language dependent. Algorithms are not.
Is an algorithm the set of instructions, or the behaviour they describe?

Equivalence class approach
Algorithms as equivalence classes under
some equivalence relation. Dubious that
any adequate equivalence relation exists.

Generalised programs
Allow arbitrary operations and objects in
programs. Language dependent, and
over-determined.
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Computable execution traces

Classical accounts of computability have a
standard form:

1 Identify a domain of primitive objects
2 Choose primitive actions on that domain
3 Describe how actions can be combined
4 Ask what, not how
5 Show extensional equivalence with other

accounts ⇝ Church-Turing Thesis

T = {[|B], [11|B], [1B1|B11], . . . }

Read1,MoveB,R, . . .

δ 1 B
s0 ⟨1,R, s0⟩ ⟨1,R, s1⟩
s1 ⟨1,R, s1⟩ ⟨B, L, s2⟩
s2 ⟨B, L, s3⟩ −
s3 − −

L[|1B11],
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Computable execution traces (cont.)

In all cases, we get a model which takes input and moves through a (possibly infinite)
sequences of stages. This gives a set of execution traces, built from the bottom up.

RunM =


L[|B], [1|B], [|1B], [|BB]ML[|1], [1|B], [11|B], [1|1B], [|1BB]ML[|1B1], [1|B1], [11|1], [111|B], [11|1B], [1|1BB]M

...


The focus is on what can be computed, not the way the computation proceeds.

Motivating question
What is required for a given set of sequences to be the execution trace set of some computable
process?
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Notation

σ, τ, υ, . . . are sequences.

f,g,h are tasks: sets of sequences.

σ[0, α+ 1) = Lσ[0], σ[1], . . . σ[α]M if α < |σ|, otherwise σ.

L[|B], [1|B], [|1B], [|BB]M[0, 3) = L[|B], [1|B]M
f = {σ[0, α+ 1) | σ ∈ f, α < ω}.

If σ[−1] = τ [0] then σ ◦ τ = Lσ[0], σ[1], . . . σ[−1], τ [1], τ [2], . . .M.
L[|B], [1|B], [|1B]M ◦ L[1|B], [|BB]M = L[|B], [1|B], [|1B], [|BB]M

f ◦ g = {σ ◦ τ | σ ∈ f, τ ∈ g}.

q is a test if |σ| = 1 for all σ ∈ q. f ◦ q = {σ ∈ f | σ[−1] ∈ q}
p is an operation if |σ| = 2 for all σ ∈ p. f ◦ p = {σ | σ[0,−1) ∈ f, Lσ[−2], σ[−1]M ∈ p}
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L[|B], [1|B], [|1B]M ◦ L[1|B], [|BB]M = L[|B], [1|B], [|1B], [|BB]M
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q is a test if |σ| = 1 for all σ ∈ q. f ◦ q = {σ ∈ f | σ[−1] ∈ q}
p is an operation if |σ| = 2 for all σ ∈ p. f ◦ p = {σ | σ[0,−1) ∈ f, Lσ[−2], σ[−1]M ∈ p}
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Which tasks could be execution trace sets?

Idea: Assemble tasks from primitive operations

q is a test if |σ| = 1 for all σ ∈ q
p is an operation if |σ| = 2 for all σ ∈ p
q ◦ p is a guarded operation
f ◦ q ◦ p = {σ | σ[0,−1) ∈ f, σ[−2] ∈ q, Lσ[−2], σ[−1]M ∈ p}

Classical accounts utilise a finitary control mechanism.
This gives an equivalence relation on stages of a computation, similar to a bisimulation:

1 σ[0, 1)⇆ τ [0, 1) for all σ, τ ∈ f
2 if σ[0, α+ 1)⇆ τ [0, α+ 1) then “the same thing” happens in each
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Control Equivalence

Assume we’re given a set of tests q and a
set of operations p: the actions we can
use.
Define an equivalence relation ⇆ on f ,
the stages of computation of an algorithm.
σ[0, 1)⇆ τ [0, 1) for all σ, τ ∈ f.
If σ ⇆ τ then “the same thing” should
happen at each.

How to capture this?
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the stages of computation of an algorithm.
σ[0, 1)⇆ τ [0, 1) for all σ, τ ∈ f.
If σ ⇆ τ then “the same thing” should
happen at each.

How to capture this?

tta :={L[u|av]M | u, v ∈ Γ∗}
tma,R :={L[ub|cv], [uba|v]M | u, v ∈ Γ∗ b, c ∈ Γ}
tma,L :={L[ub|cv], [u|bav]M | u, v ∈ Γ∗ b, c ∈ Γ}

q ={tta | a ∈ Γ}
p ={tma,R,tma,L | a ∈ Γ}
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the stages of computation of an algorithm.

σ[0, 1)⇆ τ [0, 1) for all σ, τ ∈ f.
If σ ⇆ τ then “the same thing” should
happen at each.
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Control Equivalence

Assume we’re given a set of tests q and a
set of operations p: the actions we can
use.
Define an equivalence relation ⇆ on f ,
the stages of computation of an algorithm.

σ[0, 1)⇆ τ [0, 1) for all σ, τ ∈ f.
If σ ⇆ τ then “the same thing” should
happen at each.

How to capture this?

Set σ ⇆ τ iff they correspond to the same
internal state of M.
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the stages of computation of an algorithm.
σ[0, 1)⇆ τ [0, 1) for all σ, τ ∈ f.
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Control Equivalence (cont.)

Take an equivalence class C under ⇆.

There is a construction set of guarded
operations FC ⊆ q× p such that

1 Every guarded operation in FC gets
applied to every σ ∈ C; and

2 If a guarded operation is successfully
applied to σ and τ , the results are
equivalent under ⇆.

If σ ∈ C ∩ f, there must be a test (to
show it halts).
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Control Equivalence (cont.)

Take an equivalence class C under ⇆.
There is a construction set of guarded
operations FC ⊆ q× p such that

1 Every guarded operation in FC gets
applied to every σ ∈ C; and

2 If a guarded operation is successfully
applied to σ and τ , the results are
equivalent under ⇆.

If σ ∈ C ∩ f, there must be a test (to
show it halts).

δ 1 B
s0 ⟨1,R, s0⟩ ⟨1,R, s1⟩
s1 ⟨1,R, s1⟩ ⟨B, L, s2⟩
s2 ⟨B, L, s3⟩ −
s3 − −

FC =


{⟨tt1,tm1,R⟩, ⟨ttB,tm1,R⟩} s = s0
{⟨tt1,tm1,R⟩, ⟨ttB,tmB,L⟩} s = s1
{⟨tt1,tmB,L⟩} s = s2
∅ s = s3.

L[|1B11], [1|B11],[11|11]M⇆ L[|1B11], [1|B11],[11|11],[111|1],[1111|B]M (s1)
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Control Equivalence (cont.)

Take an equivalence class C under ⇆.
There is a construction set of guarded
operations FC ⊆ q× p such that
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L[|1B11], [1|B11],[11|11]M⇆ L[|1B11], [1|B11],[11|11],[111|1],[1111|B]M (s1)

L[|1B11], [1|B11],[11|11],[111|1]M
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Control Equivalence (cont.)

Take an equivalence class C under ⇆.
There is a construction set of guarded
operations FC ⊆ q× p such that

1 Every guarded operation in FC gets
applied to every σ ∈ C; and

2 If a guarded operation is successfully
applied to σ and τ , the results are
equivalent under ⇆.

If σ ∈ C ∩ f, there must be a test (to
show it halts).

δ 1 B
s0 ⟨1,R, s0⟩ ⟨1,R, s1⟩
s1 ⟨1,R, s1⟩ ⟨B, L, s2⟩
s2 ⟨B, L, s3⟩ −
s3 − −

GC =


∅ s = s0
∅ s = s1
{ttB} s = s2
{tt1,ttB} s = s3.

L[|1B11], [1|B11],[11|11],[111|1],[1111|B],[111|1B],[11|1BB]M (s3)
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Control Equivalence

Definition (Control Equivalence)
Let q be a set of tests and p of operations. Let f be a task. A control equivalence ⇆ on f
under q and p is an equivalence relation on f satisfying:
Starting State σ[0, 1)⇆ τ [0, 1) for all σ, τ ∈ f.
Construction For each C ∈ f /⇆ there is a construction set FC ⊆ q× p such that both:

Composition {σ ∈ f | σ[0,−1) ∈ C} =
∪

⟨q,p⟩∈FC
C ◦ q ◦ p; and

Consistency if ⟨q,p⟩ ∈ FC then C ◦ q ◦ p ⊆ D for some D ∈ f /⇆.
Halting For each C ∈ f /⇆ there is a halting set GC ⊆ q such that

C ∩ f =
∪

q∈GC
C ◦ q.

Definition (Trace set)
A trace set for q and p is a pair a = (f,⇆), where f is a task and ⇆ is a control equivalence
on f under q and p.
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Finite Control Computability

Proposition
For every task f over D there is a test set e, an operation set w and a control equivalence ⇆
such that a = (f,⇆) is a trace set for e and w.

Definition (Finite control computable)
A trace set a for q and p is finite control computable if a /⇆a is finite, q and p are finite,
and every q ∈ q and p ∈ p is computable.

Theorem
If M = ⟨S,Γ, δ, s0⟩ is a Turing machine then RunM is finite control computable.
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Does finite control computable imply Turing computable?

Is every FCC trace set the trace set of some Turing machine?
No!

1 FCC allows arbitrary computable tests and operations
2 FCC allows more domains than machine tapes

Theorem
Let a = (f,⇆) be a trace set for t and m and Γ ⊆ G a finite alphabet such that

1 For every σ ∈ a and α < |σ|, σ[α] = [u|v] for some u, v ∈ Γ∗; and
2 For every u, v ∈ Γ∗ there is a unique σ ∈ a with σ[0] = [u|v]; and
3 a is fully deterministic (σ[0] = τ [0] implies σ = τ).

Then there is a Turing machine M = ⟨S,Γ, δ, s0⟩ such that RunM = a iff a is finite control
computable.

Can we do better? Can we allow arbitrary computable tests and operations?
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Expansion mapping

L[|1B11], [11|11],[111|1B],[11|1BB]M

No Turing Machine can do this. But M can fill in the gaps:L[|1B11], [1|B11],[11|11],[111|1],[1111|B],[111|1B],[11|1BB]M
Define a function h mapping prefixes of the original sequence to prefixes of the expanded
sequence.

h(L[|1B11]M) = L[|1B11]M
h(L[|1B11], [11|11]M) = L[|1B11], [1|B11],[11|11]M

h(L[|1B11], [11|11],[111|1B]M) = L[|1B11], . . . [111|1B]M
...

Expansion Mapping
f ≪ g if there is an injective h : f → g such that σ is a subsequence of h(σ) and h(f) = g.
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Expansion mapping is not enough

Example
Take Primes, enumerating all prime in increasing order:

{L[11|B], [111|B], [11111|B], [1111111|B], . . .M}
Take M = ⟨{s}, {1,B}, δ, s⟩ with δ(s, 1) = δ(s, B) = ⟨1,R, s⟩.

{L[|B], [1|B], [11|B], [111|B], [1111|B], . . .M}
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Carrying out

Two requirements:
1 We need to be able to recover the original task from the expanded task.
2 If M carries out a task, that task needs to be computable!

Definition (Carrying out)
We say a is carried out by b if there is an expansion mapping h from a to b such that
C ∈ a /⇆a iff h(C) ∈ b /⇆b.
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FCC and Turing Computability

Theorem
Let a = (f,⇆) be a trace set for q and p such that a is finite control and fully deterministic; q
and p are both finite and Turing computable; there is a finite alphabet Γ such that

1 for every σ ∈ a, σ[0] = [u|v] for some u ∈ Γ∗, v ∈ Γ+;
2 for every u ∈ Γ∗, v ∈ Γ+ there exists σ ∈ a with σ[0] = [u|v].

Then there is a Turing machine M such that RunM carries out a.

Theorem
Let a be a trace set and M = ⟨S,Γ, δ, s0⟩ be a Turing machine. If RunM carries out a then a
is finite control computable.
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Outline

1 What are algorithms?

2 Computable Execution Traces
Finite control computability
Carrying out trace sets

3 Algorithms as trace sets
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Algorithms as trace sets

Idea: Model algorithms as trace sets.
“Functionalism about functions”

An extensional account of algorithms that doesn’t reduce to functional equivalence.
Avoid commitments to computability, allowing for arbitrary basic operations and
non-terminating algorithms.

Extant accounts of algorithms

What model/what objects?
Hard to get ambiguity,
under-determinism
Language dependence
A set of instructions

Trace set account

Allow arbitrary domains and
operations
No requirement for full determinism
Purely semantic
A set of behaviours
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Algorithms as trace sets: further details

Algorithms are always presented as a (potential) solution to some problem, in a particular
context.

A problem in context provides a test set q and operation set p.
This provides the level of abstraction for the algorithm.

(Sequential) algorithms specify a sequence of steps from inputs, possibly to outputs.

This is precisely what a task does.
Model an algorithm not as instructions, but as what it does. cf. functions.

Algorithms are generally taken to be semantic, not syntactic objects.

What this means depends on your philosophical persuasions.
Tasks are sets of sequences of mathematical objects - whatever they are, and whatever that
means.
Tasks avoid issues around equivalence of control flow structures.

Algorithms should be specifiable via finitary means.

Finite control ensures this for trace sets.

Algorithms are ambiguous!
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What else?

1 Ask me for details about:

Encoding: changing the domain over which a trace set is defined.
Resolution: removing ambiguity from a trace set; introducing tie-breakers.
Implementation: increasing the level of specification; the relationship between programs and
algorithms.
Computable functions vs. algorithms.

2 Ask me to ramble about:

Trace sets with arbitrary tasks (not just tests and operations)
Recursive algorithms
Concurrent/parallel computation
Interactive algorithms
Transfinite sequences
Probabilistic algorithms
Complexity theory

Thank you!
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