Local Fact Change Logic, Memory Logic and Expressive Power

> Declan Thompson Stanford University

Tsinghua University, 16 October 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Talk Overview

Boolean (network) games

Local Fact Change

Undecidability via Memory Logic

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Measuring expressive power

Conclusion

Boolean Games

- We have a set Prop of propositions.
- Each player controls a subset of Prop.
- Each player s has a formula γ_s of propositional logic as their goal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

By choosing the valuation on their propositions, s tries to make γ_s true.

Boolean Network Games

- Players are arranged in a network.
- Each player controls *all the propositions at their position*.
- Each player s has a formula γ_s of modal logic as their goal.
- By choosing the valuation at their position, s tries to make γ_s true.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

BNGs: Strategies and equilibria

Definition (Strategy (profile))

A strategy is a subset of Prop. A strategy profile is a function $V: W \rightarrow 2^{Prop}$.

BNGs: Strategies and equilibria

Definition (Strategy (profile))

A strategy is a subset of Prop. A strategy profile is a function $V: W \rightarrow 2^{Prop}$.

Definition (Nash equilibrium)

A strategy profile V is a *Nash equilibrium* if there is no player who can do better by changing strategy.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

BNGs: Strategies and equilibria

Definition (Strategy (profile))

A strategy is a subset of Prop. A strategy profile is a function $V: W \rightarrow 2^{Prop}$.

Definition (Nash equilibrium)

A strategy profile V is a *Nash equilibrium* if there is no player who can do better by changing strategy.

How can we make this definition more precise? We need a logical way to talk about *changing strategies*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Define a logic for BNG equilibria.

Define a logic for BNG equilibria.

Definition (\mathcal{L}_{LFC})

 $\varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Diamond \varphi$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Define a logic for BNG equilibria.

Definition (\mathcal{L}_{LFC})

 $\varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Diamond \varphi \mid \bigcirc \varphi$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Define a logic for BNG equilibria.

Definition (\mathcal{L}_{LFC})

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Diamond \varphi \mid \bigcirc \varphi$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition (Truth in a model)

Define a logic for BNG equilibria.

Definition (\mathcal{L}_{LFC})

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Diamond \varphi \mid \bigcirc \varphi$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition (Truth in a model) \mathfrak{F}

Define a logic for BNG equilibria.

Definition (\mathcal{L}_{LFC})

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Diamond \varphi \mid \bigcirc \varphi$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition (Truth in a model) \mathfrak{F}, V

Define a logic for BNG equilibria.

Definition (\mathcal{L}_{LFC})

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Diamond \varphi \mid \bigcirc \varphi$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition (Truth in a model) \mathfrak{F}, V, s

Define a logic for BNG equilibria.

Definition (\mathcal{L}_{LFC})

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Diamond \varphi \mid \bigcirc \varphi$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Define a logic for BNG equilibria.

Definition (\mathcal{L}_{LFC})

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Diamond \varphi \mid \bigcirc \varphi$$

Definition (Truth in a model) $\mathfrak{F}, V, s \models p$ iff $\mathfrak{F}, V, s \models \neg \varphi$ iff $\mathfrak{F}, V, s \models \neg \varphi$ iff $\mathfrak{F}, V, s \models (\varphi \land \psi)$ iff $\mathfrak{F}, V, s \models \Diamond \varphi$ iff $\mathfrak{F}, V, s \models \Diamond \varphi$ iff $\mathfrak{F}, V, s \models \Diamond \varphi$ iff $\mathfrak{F}, V, t \models \varphi$ for some t with Rst

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Define a logic for BNG equilibria.

Definition (\mathcal{L}_{LFC})

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Diamond \varphi \mid \bigcirc \varphi$$

Definition (Truth in a model)

$\mathfrak{F}, V, s \models p$	iff	$p\in V(s)$
$\mathfrak{F}, V, s \models \neg \varphi$	iff	$\mathfrak{F}, V, s ot \models arphi$
$\mathfrak{F}, V, s \models (\varphi \land \psi)$	iff	$\mathfrak{F}, oldsymbol{V}, oldsymbol{s} \models arphi$ and $\mathfrak{F}, oldsymbol{V}, oldsymbol{s} \models \psi$
$\mathfrak{F}, V, s \models \Diamond \varphi$	iff	$\mathfrak{F}, V, t \models arphi$ for some t with Rst
$\mathfrak{F}, V, s \models \bigcirc \varphi$	iff	$\mathfrak{F}, V^{s}_{\mathcal{A}}, s \models \varphi$ for some $\mathcal{A} \subseteq Prop$

Define a logic for BNG equilibria.

Definition (\mathcal{L}_{LFC})

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Diamond \varphi \mid \bigcirc \varphi$$

Definition (Truth in a model) $\mathfrak{F}, V, s \models p$ iff $p \in V(s)$ $\mathfrak{F}, V, s \models \neg \varphi$ iff $\mathfrak{F}, V, s \not\models \varphi$ $\mathfrak{F}, V, s \models (\varphi \land \psi)$ iff $\mathfrak{F}, V, s \models \varphi$ and $\mathfrak{F}, V, s \models \psi$ $\mathfrak{F}, V, s \models \Diamond \varphi$ iff $\mathfrak{F}, V, t \models \varphi$ for some t with Rst $\mathfrak{F}, V, s \models \bigcirc \varphi$ iff $\mathfrak{F}, V_A, s \models \varphi$ for some A \subseteq Prop

Changes the valuation but only at the current state.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへぐ

▶ *V* is a Nash equilibrium iff $\mathfrak{F}, V, s \models \bigcirc \gamma_s \rightarrow \gamma_s$ for every player *s*.

▶ *V* is a Nash equilibrium iff $\mathfrak{F}, V, s \models \bigcirc \gamma_s \rightarrow \gamma_s$ for every player *s*.

For propositional φ , $\neg \bigcirc \neg \varphi$ is true iff φ is valid.

- ▶ *V* is a Nash equilibrium iff $\mathfrak{F}, V, s \models \bigcirc \gamma_s \rightarrow \gamma_s$ for every player *s*.
- For propositional φ , $\neg \bigcirc \neg \varphi$ is true iff φ is valid.
- ▶ LFC is strictly more expressive than basic modal logic: $\bigcirc \Diamond p \rightarrow \Diamond p$ is valid on a frame iff it is irreflexive.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ *V* is a Nash equilibrium iff $\mathfrak{F}, V, s \models \bigcirc \gamma_s \rightarrow \gamma_s$ for every player *s*.
- For propositional φ , $\neg \bigcirc \neg \varphi$ is true iff φ is valid.
- ▶ LFC is strictly more expressive than basic modal logic: $\bigcirc \Diamond p \rightarrow \Diamond p$ is valid on a frame iff it is irreflexive.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

How expressive is it?

Talk Overview

Boolean (network) games

Local Fact Change

Undecidability via Memory Logic

Measuring expressive power

Conclusion

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Definition $(\mathcal{L}_{\mathsf{M}})$

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Diamond \varphi$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Definition $(\mathcal{L}_{\mathsf{M}})$

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Diamond \varphi \mid \bigcirc \varphi \mid (k)$$

$\begin{array}{l} \text{Definition } (\mathcal{L}_{\mathsf{M}}) \\ \varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Diamond \varphi \mid \bigcirc \varphi \mid \bigotimes \end{array}$

Definition (Truth in a model (Memory Logic))

 $\mathfrak{F}, V,$

$\begin{array}{l} \text{Definition } (\mathcal{L}_{\mathsf{M}}) \\ \varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Diamond \varphi \mid \bigcirc \varphi \mid \bigotimes \end{array}$

Definition (Truth in a model (Memory Logic))

 $\mathfrak{F}, V, C,$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

$\begin{array}{l} \text{Definition } (\mathcal{L}_{\mathsf{M}}) \\ \varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Diamond \varphi \mid \bigcirc \varphi \mid \bigotimes \end{array}$

Definition (Truth in a model (Memory Logic))

$$\mathfrak{F}, V, C, s$$

$\begin{array}{l} \text{Definition } (\mathcal{L}_{\mathsf{M}}) \\ \varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Diamond \varphi \mid \bigcirc \varphi \mid \bigotimes \end{array}$

Definition (Truth in a model (Memory Logic))

$$\mathfrak{F}, \mathsf{V}, \mathsf{C}, \mathsf{s} \models_{\mathsf{M}} \mathfrak{F} \varphi \quad \text{iff} \quad \mathfrak{F}, \mathsf{V}, \mathsf{C} \cup \{\mathsf{s}\}, \mathsf{s} \models_{\mathsf{M}} \varphi$$

$\begin{array}{l} \text{Definition } (\mathcal{L}_{\mathsf{M}}) \\ \varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Diamond \varphi \mid \bigcirc \varphi \mid \bigotimes \end{array}$

Definition (Truth in a model (Memory Logic))

$$\begin{aligned} \mathfrak{F}, V, C, s \models_{\mathsf{M}} (\widehat{r} \varphi & \text{iff} \quad \mathfrak{F}, V, C \cup \{s\}, s \models_{\mathsf{M}} \varphi \\ \mathfrak{F}, V, C, s \models_{\mathsf{M}} (\widehat{k}) & \text{iff} \quad s \in C \end{aligned}$$

$\begin{array}{l} \text{Definition } (\mathcal{L}_{\mathsf{M}}) \\ \varphi ::= p \mid \neg \varphi \mid (\varphi \land \varphi) \mid \Diamond \varphi \mid \bigcirc \varphi \mid \bigotimes \end{array}$

Definition (Truth in a model (Memory Logic))

$$\begin{aligned} \mathfrak{F}, V, C, s \models_{\mathsf{M}} (\mathfrak{F} \varphi & \text{iff} \quad \mathfrak{F}, V, C \cup \{s\}, s \models_{\mathsf{M}} \varphi \\ \mathfrak{F}, V, C, s \models_{\mathsf{M}} (\mathbf{k}) & \text{iff} \quad s \in C \end{aligned}$$

Theorem

The satisfiability problem for memory logic is undecidable (Mera 2009).

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Undecidability of LFC

Main idea

We translate satisfiability problems for ${\sf M}$ to satisfiability problems for LFC.

Main idea

We translate satisfiability problems for ${\sf M}$ to satisfiability problems for LFC.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▶ Treat the memory set *C* as a proposition *q*.

Main idea

We translate satisfiability problems for M to satisfiability problems for LFC.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- ▶ Treat the memory set *C* as a proposition *q*.
- Define an operator (q) in LFC which makes q true.

Main idea

We translate satisfiability problems for M to satisfiability problems for LFC.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- ▶ Treat the memory set *C* as a proposition *q*.
- Define an operator (q) in LFC which makes q true.

•
$$T(\mathbf{k}) = q$$
 and $T(\mathbf{r}\varphi) = \mathbf{q} T(\varphi)$.

Main idea

We translate satisfiability problems for M to satisfiability problems for LFC.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ▶ Treat the memory set *C* as a proposition *q*.
- Define an operator (q) in LFC which makes q true.

•
$$T(\widehat{k}) = q$$
 and $T(\widehat{r} \varphi) = \widehat{q} T(\varphi)$.

Theorem

The satisfiability problem for LFC is undecidable.

Main idea

We translate satisfiability problems for M to satisfiability problems for LFC.

- ▶ Treat the memory set *C* as a proposition *q*.
- Define an operator (q) in LFC which makes q true.

•
$$T(\widehat{k}) = q$$
 and $T(\widehat{r} \varphi) = \widehat{q} T(\varphi)$.

Theorem

The satisfiability problem for LFC is undecidable.

There are many more details. In particular, *the translation is not direct.* How do M and LFC compare?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Talk Overview

Boolean (network) games

Local Fact Change

Undecidability via Memory Logic

Measuring expressive power

Conclusion

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

 $\begin{array}{l} \text{Definition } (\leq, \text{ ``translation'')} \\ \text{A} \leq \text{B if there is a } \mathfrak{T}: \mathcal{L}_{\text{A}} \rightarrow \mathcal{L}_{\text{B}} \text{ such that for all models } \mathfrak{M}, \end{array}$

 $\mathfrak{M}\models_{\mathsf{A}} \varphi$ iff $\mathfrak{M}\models_{\mathsf{B}} \mathfrak{T}(\varphi)$.

 $\begin{array}{l} \text{Definition } (\leq, \text{``translation'')} \\ \text{A} \leq \text{B if there is a } \mathfrak{T}: \mathcal{L}_{\text{A}} \rightarrow \mathcal{L}_{\text{B}} \text{ such that for all models } \mathfrak{M}, \end{array}$

$$\mathfrak{M}\models_{\mathsf{A}} \varphi$$
 iff $\mathfrak{M}\models_{\mathsf{B}} \mathfrak{T}(\varphi)$.

Definition (\leq , "no more distinctions")

A \leq B if for every pair of models $\mathfrak{M}_1, \mathfrak{M}_2$, if there is $\varphi \in \mathcal{L}_A$ such that $\mathfrak{M}_1 \models_A \varphi$ and $\mathfrak{M}_2 \not\models_A \varphi$ then there is $\psi \in \mathcal{L}_B$ such that $\mathfrak{M}_1 \models_B \psi$ and $\mathfrak{M}_2 \not\models_B \psi$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

$\begin{array}{l} \text{Definition } (\leq, \text{``translation'')} \\ \text{A} \leq \text{B if there is a } \mathfrak{T}: \mathcal{L}_{\text{A}} \rightarrow \mathcal{L}_{\text{B}} \text{ such that for all models } \mathfrak{M}, \end{array}$

$$\mathfrak{M}\models_{\mathsf{A}} \varphi$$
 iff $\mathfrak{M}\models_{\mathsf{B}} \mathfrak{T}(\varphi)$.

Definition (\leq , "no more distinctions")

A \leq B if for every pair of models $\mathfrak{M}_1, \mathfrak{M}_2$, if there is $\varphi \in \mathcal{L}_A$ such that $\mathfrak{M}_1 \models_A \varphi$ and $\mathfrak{M}_2 \not\models_A \varphi$ then there is $\psi \in \mathcal{L}_B$ such that $\mathfrak{M}_1 \models_B \psi$ and $\mathfrak{M}_2 \not\models_B \psi$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fact If A < B then $A \prec B$.

Proof. Take $\mathfrak{T}(\varphi)$ for ψ .

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

A ∠ B iff there is a pair of models 𝔐₁, 𝔐₂ that A can distinguish that B cannot.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

- A ∠ B iff there is a pair of models 𝔐₁, 𝔐₂ that A can distinguish that B cannot.
- ► To compare M and LFC, we need a modal invariance notion.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- A ∠ B iff there is a pair of models 𝔐₁, 𝔐₂ that A can distinguish that B cannot.
- ► To compare M and LFC, we need a modal invariance notion.

When are two models indistinguishable for LFC?

Ehrenfeucht-Fraïssé Games for LFC $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_1, V_2, s_1, s_2)$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

- $EF(\mathfrak{F}_1,\mathfrak{F}_2,V_1,V_2,s_1,s_2)$
 - If $V_1(s_1) \neq V_2(s_2)$ then Spoiler wins.

 $EF(\mathfrak{F}_1,\mathfrak{F}_2,V_1,V_2,s_1,s_2)$

- If $V_1(s_1) \neq V_2(s_2)$ then Spoiler wins.
- Else if both s₁ and s₂ have no neighbours then Duplicator wins.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $EF(\mathfrak{F}_1,\mathfrak{F}_2,V_1,V_2,s_1,s_2)$

- If $V_1(s_1) \neq V_2(s_2)$ then Spoiler wins.
- Else if both s₁ and s₂ have no neighbours then Duplicator wins.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Else Spoiler chooses one of the following two moves:

 $EF(\mathfrak{F}_1,\mathfrak{F}_2,V_1,V_2,s_1,s_2)$

- If $V_1(s_1) \neq V_2(s_2)$ then Spoiler wins.
- Else if both s₁ and s₂ have no neighbours then Duplicator wins.
- Else Spoiler chooses one of the following two moves:
 - 1. Spoiler picks $A \subseteq$ Prop. We play $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_{1A}^{s_1}, V_{2A}^{s_2}, s_1, s_2)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $EF(\mathfrak{F}_1,\mathfrak{F}_2,V_1,V_2,s_1,s_2)$

- If $V_1(s_1) \neq V_2(s_2)$ then Spoiler wins.
- Else if both s₁ and s₂ have no neighbours then Duplicator wins.
- *Else* Spoiler chooses one of the following two moves:
 - 1. Spoiler picks $A \subseteq$ Prop. We play $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_{1A}^{s_1}, V_{2A}^{s_2}, s_1, s_2)$.
 - 2. The following occur in order:
 - 2.1 Spoiler chooses $i \in \{1,2\}$ (j is the other)
 - 2.2 Spoiler chooses $t_i \in W_i$ such that $R_i s_i t_i$.
 - 2.3 If there is no t_j with $R_j s_j t_j$, Spoiler wins. Otherwise, Duplicator picks such a t_j . We play $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_1, V_2, t_1, t_2)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $EF(\mathfrak{F}_1,\mathfrak{F}_2,V_1,V_2,s_1,s_2)$

- If $V_1(s_1) \neq V_2(s_2)$ then Spoiler wins.
- Else if both s₁ and s₂ have no neighbours then Duplicator wins.
- *Else* Spoiler chooses one of the following two moves:
 - 1. Spoiler picks $A \subseteq$ Prop. We play $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_{1A}^{s_1}, V_{2A}^{s_2}, s_1, s_2)$.
 - 2. The following occur in order:
 - 2.1 Spoiler chooses $i \in \{1,2\}$ (j is the other)
 - 2.2 Spoiler chooses $t_i \in W_i$ such that $R_i s_i t_i$.
 - 2.3 If there is no t_j with $R_j s_j t_j$, Spoiler wins. Otherwise, Duplicator picks such a t_j . We play $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_1, V_2, t_1, t_2)$.

In an infinite game, Duplicator wins.

 $EF(\mathfrak{F}_1,\mathfrak{F}_2,V_1,V_2,s_1,s_2)$

- If $V_1(s_1) \neq V_2(s_2)$ then Spoiler wins.
- Else if both s₁ and s₂ have no neighbours then Duplicator wins.
- *Else* Spoiler chooses one of the following two moves:
 - 1. Spoiler picks $A \subseteq$ Prop. We play $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_{1A}^{s_1}, V_{2A}^{s_2}, s_1, s_2)$.
 - 2. The following occur in order:
 - 2.1 Spoiler chooses $i \in \{1,2\}$ (j is the other)
 - 2.2 Spoiler chooses $t_i \in W_i$ such that $R_i s_i t_i$.
 - 2.3 If there is no t_j with $R_j s_j t_j$, Spoiler wins. Otherwise, Duplicator picks such a t_j . We play $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_1, V_2, t_1, t_2)$.

In an infinite game, Duplicator wins.

Fact

If Duplicator has a winning strategy then for all φ ,

 $\mathfrak{F}_1, V_1, \mathfrak{s}_1 \models_{\mathsf{LFC}} \varphi$ iff $\mathfrak{F}_2, V_2, \mathfrak{s}_2 \models_{\mathsf{LFC}} \varphi$.

We find a pair of models M can distinguish that LFC cannot.

We find a pair of models M can distinguish that LFC cannot.

We find a pair of models M can distinguish that LFC cannot.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We find a pair of models M can distinguish that LFC cannot.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

We find a pair of models M can distinguish that LFC cannot.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

We find a pair of models M can distinguish that LFC cannot.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

 $M \not\leq LFC$ (cont.)

Duplicator has a winning strategy in LFC

- s and t have the same valuation.
- Every node has a neighbour.
- For every node spoiler picks, there is an *unvisited* node with the same valuation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

$\mathsf{M} \not\leq \mathsf{LFC} \text{ (cont.)}$

$\blacktriangleright \ \mathfrak{G}_1, \emptyset, s \models_{\mathsf{M}} (\mathfrak{r} \Diamond \langle k \rangle \text{ and } \mathfrak{G}_2, \emptyset, t \not\models_{\mathsf{M}} (\mathfrak{r} \Diamond \langle k \rangle)$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

• $\mathfrak{G}_1, \emptyset, s \models_{\mathsf{M}} \mathfrak{T} \Diamond (k)$ and $\mathfrak{G}_2, \emptyset, t \not\models_{\mathsf{M}} \mathfrak{T} \Diamond (k)$ • For every $\varphi, \mathfrak{G}_1, s \models_{\mathsf{LFC}} \varphi$ iff $\mathfrak{G}_2, t \models_{\mathsf{LFC}} \varphi$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- $\mathfrak{G}_1, \emptyset, s \models_{\mathsf{M}} \mathfrak{O} \Diamond \mathbb{k}$ and $\mathfrak{G}_2, \emptyset, t \not\models_{\mathsf{M}} \mathfrak{O} \Diamond \mathbb{k}$
- $\blacktriangleright \text{ For every } \varphi, \mathfrak{G}_1, s \models_{\mathsf{LFC}} \varphi \text{ iff } \mathfrak{G}_2, t \models_{\mathsf{LFC}} \varphi$
- ► M 🛃 LFC

Definition (\preceq)

A \leq B if for every pair of models $\mathfrak{M}_1, \mathfrak{M}_2$, if there is $\varphi \in \mathcal{L}_A$ such that $\mathfrak{M}_1 \models_A \varphi$ and $\mathfrak{M}_2 \not\models_A \varphi$ then there is $\psi \in \mathcal{L}_B$ such that $\mathfrak{M}_1 \models_B \psi$ and $\mathfrak{M}_2 \not\models_B \psi$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- $\blacktriangleright \ \mathfrak{G}_1, \emptyset, \mathfrak{s} \models_{\mathsf{M}} (\hat{r} \Diamond \langle k \rangle \text{ and } \mathfrak{G}_2, \emptyset, t \not\models_{\mathsf{M}} (\hat{r} \Diamond \langle k \rangle)$
- $\blacktriangleright \text{ For every } \varphi, \mathfrak{G}_1, s \models_{\mathsf{LFC}} \varphi \text{ iff } \mathfrak{G}_2, t \models_{\mathsf{LFC}} \varphi$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- ► M ∠ LFC
- ► M ≰ LFC

- $\blacktriangleright \ \mathfrak{G}_1, \emptyset, \mathfrak{s} \models_{\mathsf{M}} (\hat{r} \Diamond \langle k \rangle \text{ and } \mathfrak{G}_2, \emptyset, t \not\models_{\mathsf{M}} (\hat{r} \Diamond \langle k \rangle)$
- $\blacktriangleright \text{ For every } \varphi, \mathfrak{G}_1, s \models_{\mathsf{LFC}} \varphi \text{ iff } \mathfrak{G}_2, t \models_{\mathsf{LFC}} \varphi$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- ► M ∠ LFC
- ► M ≰ LFC

What about finite models?

Restricted EF Games for LFC

 $EF_R(\mathfrak{F}_1,\mathfrak{F}_2,V_1,V_2,s_1,s_2)$

- If $V_1(s_1) \neq V_2(s_2)$ then Spoiler wins.
- Else if both s₁ and s₂ have no neighbours then Duplicator wins.
- *Else* Spoiler chooses one of the following two moves:
 - 1. Spoiler picks $A \subseteq$ Prop. We play $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_1^{s_1}, V_2^{s_2}, s_1, s_2)$.
 - 2. The following occur in order:
 - 2.1 Spoiler chooses $i \in \{1,2\}$ (j is the other)
 - 2.2 Spoiler chooses $t_i \in W_i$ such that $R_i s_i t_i$.
 - 2.3 If there is no t_j with $R_j s_j t_j$, Spoiler wins. Otherwise, Duplicator picks such a t_j . We play $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_1, V_2, t_1, t_2)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

In an infinite game, Duplicator wins.

Restricted EF Games for LFC

 $\textit{EF}_{\textit{R}}(\mathfrak{F}_1,\mathfrak{F}_2,\textit{V}_1,\textit{V}_2,\textit{s}_1,\textit{s}_2,\textit{B} \subseteq \mathsf{Prop}$

- If $V_1(s_1) \neq V_2(s_2)$ then Spoiler wins.
- Else if both s₁ and s₂ have no neighbours then Duplicator wins.
- *Else* Spoiler chooses one of the following two moves:
 - 1. Spoiler picks $A \subseteq$ Prop. We play $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_{1A}^{s_1}, V_{2A}^{s_2}, s_1, s_2)$.
 - 2. The following occur in order:
 - 2.1 Spoiler chooses $i \in \{1,2\}$ (j is the other)
 - 2.2 Spoiler chooses $t_i \in W_i$ such that $R_i s_i t_i$.
 - 2.3 If there is no t_j with $R_j s_j t_j$, Spoiler wins. Otherwise, Duplicator picks such a t_j . We play $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_1, V_2, t_1, t_2)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

In an infinite game, Duplicator wins.

 $EF_R(\mathfrak{F}_1,\mathfrak{F}_2,V_1,V_2,s_1,s_2,B,n)$

- If $V_1(s_1) \neq V_2(s_2)$ then Spoiler wins.
- Else if both s₁ and s₂ have no neighbours then Duplicator wins.
- Else Spoiler chooses one of the following two moves:
 - 1. Spoiler picks $A \subseteq$ Prop. We play $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_{1A}^{s_1}, V_{2A}^{s_2}, s_1, s_2)$.
 - 2. The following occur in order:
 - 2.1 Spoiler chooses $i \in \{1,2\}$ (j is the other)
 - 2.2 Spoiler chooses $t_i \in W_i$ such that $R_i s_i t_i$.
 - 2.3 If there is no t_j with $R_j s_j t_j$, Spoiler wins. Otherwise, Duplicator picks such a t_j . We play $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_1, V_2, t_1, t_2)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

In an infinite game, Duplicator wins.

 $EF_R(\mathfrak{F}_1,\mathfrak{F}_2,V_1,V_2,s_1,s_2,B,n)$

- If $V_1(s_1) \neq V_2(s_2)$ then Spoiler wins.
- Else if both s₁ and s₂ have no neighbours then Duplicator wins.
- *Else* Spoiler chooses one of the following two moves:
 - 1. Spoiler picks $A \subseteq B$. We play $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_{1A}^{s_1}, V_{2A}^{s_2}, s_1, s_2)$.
 - 2. The following occur in order:
 - 2.1 Spoiler chooses $i \in \{1,2\}$ (j is the other)
 - 2.2 Spoiler chooses $t_i \in W_i$ such that $R_i s_i t_i$.
 - 2.3 If there is no t_j with $R_j s_j t_j$, Spoiler wins. Otherwise, Duplicator picks such a t_j . We play $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_1, V_2, t_1, t_2)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

In an infinite game, Duplicator wins.

 $EF_R(\mathfrak{F}_1,\mathfrak{F}_2,V_1,V_2,s_1,s_2,B,n)$

- If $V_1(s_1) \neq V_2(s_2)$ then Spoiler wins.
- Else if both s₁ and s₂ have no neighbours then Duplicator wins.
- *Else* Spoiler chooses one of the following two moves:
 - 1. Spoiler picks $A \subseteq B$. We play $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_{1A}^{s_1}, V_{2A}^{s_2}, s_1, s_2)$.
 - 2. The following occur in order:
 - 2.1 Spoiler chooses $i \in \{1,2\}$ (j is the other)
 - 2.2 Spoiler chooses $t_i \in W_i$ such that $R_i s_i t_i$.
 - 2.3 If there is no t_j with $R_j s_j t_j$, Spoiler wins. Otherwise, Duplicator picks such a t_j . We play $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_1, V_2, t_1, t_2)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

If Spoiler does not win in *n* rounds, Duplicator wins.

 $EF_R(\mathfrak{F}_1,\mathfrak{F}_2,V_1,V_2,s_1,s_2,B,n)$

- If $V_1(s_1) \neq V_2(s_2)$ then Spoiler wins.
- Else if both s₁ and s₂ have no neighbours then Duplicator wins.
- Else Spoiler chooses one of the following two moves:
 - 1. Spoiler picks $A \subseteq B$. We play $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_{1A}^{s_1}, V_{2A}^{s_2}, s_1, s_2)$.
 - 2. The following occur in order:
 - 2.1 Spoiler chooses $i \in \{1,2\}$ (j is the other)
 - 2.2 Spoiler chooses $t_i \in W_i$ such that $R_i s_i t_i$.
 - 2.3 If there is no t_j with $R_j s_j t_j$, Spoiler wins. Otherwise, Duplicator picks such a t_j . We play $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_1, V_2, t_1, t_2)$.

If Spoiler does not win in n rounds, Duplicator wins.

Fact

If Duplicator has a winning strategy, $\mathsf{MD}(\varphi) \leq \mathsf{n}$ and $\mathsf{At}(\varphi) \subseteq \mathsf{B}$,

$$\mathfrak{F}_1, V_1, \mathfrak{s}_1 \models_{\mathsf{LFC}} \varphi \quad i\!f\!f \quad \mathfrak{F}_2, V_2, \mathfrak{s}_2 \models_{\mathsf{LFC}} \varphi.$$

Suppose $T : \mathcal{L}_{\mathsf{M}} \to \mathcal{L}_{LFC}$, and $\psi = T(\mathbf{r} \Diamond \mathbf{k})$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Suppose $T : \mathcal{L}_{\mathsf{M}} \to \mathcal{L}_{LFC}$, and $\psi = T(\mathbf{r} \Diamond \mathbf{k})$. Let $B = \mathsf{At}(\psi)$ and $n = \mathsf{MD}(\psi)$.

Suppose $T : \mathcal{L}_{\mathsf{M}} \to \mathcal{L}_{LFC}$, and $\psi = T(\mathbf{r} \Diamond \mathbf{k})$. Let $B = \mathsf{At}(\psi)$ and $n = \mathsf{MD}(\psi)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Suppose $T : \mathcal{L}_{\mathsf{M}} \to \mathcal{L}_{LFC}$, and $\psi = T(\mathbf{r} \Diamond \mathbf{k})$. Let $B = \mathsf{At}(\psi)$ and $n = \mathsf{MD}(\psi)$.

Duplicator has the same winning strategy as before in EF_R(𝔅₁, 𝔅₂, V₁, V₂, s, t, B, n).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$M \not\leq LFC$ on finite models (cont.)

► For any translation T, we can construct a pair 𝔅₁, 𝔅₂ such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 1. $\mathfrak{G}_1, \emptyset, s \models_{\mathsf{M}} \mathfrak{r} \Diamond \Bbbk$ 2. $\mathfrak{G}_2, \emptyset, t \not\models_{\mathsf{M}} \mathfrak{r} \Diamond \Bbbk$
- 3. $\mathfrak{G}_1, s \models_{\mathsf{LFC}} T(\mathfrak{O} \Diamond k)$ iff $\mathfrak{G}_2, t \models_{\mathsf{LFC}} T(\mathfrak{O} \Diamond k)$

$M \not\leq LFC$ on finite models (cont.)

► For any translation *T*, we can construct a pair 𝔅₁, 𝔅₂ such that

1.
$$\mathfrak{G}_1, \emptyset, s \models_{\mathsf{M}} \mathfrak{O} \Diamond \mathbb{k}$$

- 2. $\mathfrak{G}_2, \emptyset, t \not\models_{\mathsf{M}} (\mathbf{\hat{r}}) \Diamond (\mathbf{k})$ 2. $\mathfrak{G}_2, \emptyset, t \not\models_{\mathsf{M}} (\mathbf{\hat{r}}) \Diamond (\mathbf{k})$ iff $\mathfrak{G}_2, \mathfrak{K}$
- 3. $\mathfrak{G}_1, s \models_{\mathsf{LFC}} T(\mathfrak{r} \Diamond \Bbbk)$ iff $\mathfrak{G}_2, t \models_{\mathsf{LFC}} T(\mathfrak{r} \Diamond \Bbbk)$

► So no translation satisfies the definition of ≤.

Definition (\leq)

 $\mathsf{A} \leq \mathsf{B}$ if there is a $\mathfrak{T}: \mathcal{L}_\mathsf{A} \to \mathcal{L}_\mathsf{B}$ such that for all models $\mathfrak{M},$

 $\mathfrak{M}\models_{\mathsf{A}} \varphi$ iff $\mathfrak{M}\models_{\mathsf{B}} \mathfrak{T}(\varphi)$.

$M \not\leq LFC$ on finite models (cont.)

► For any translation *T*, we can construct a pair 𝔅₁, 𝔅₂ such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1.
$$\mathfrak{G}_1, \emptyset, s \models_{\mathsf{M}} \mathfrak{O} \Diamond \mathbb{k}$$

- 2. $\mathfrak{G}_2, \emptyset, t \not\models_{\mathsf{M}} (\mathbf{\hat{r}} \Diamond (\mathbf{k}))$
- 3. $\mathfrak{G}_1, s \models_{\mathsf{LFC}} T(\mathfrak{O} \Diamond \mathbb{k})$ iff $\mathfrak{G}_2, t \models_{\mathsf{LFC}} T(\mathfrak{O} \Diamond \mathbb{k})$
- So no translation satisfies the definition of \leq .
- So M \leq LFC on finite models.

BUT!

Fix *n* and $B \subsetneq$ Prop. Take $q \notin B$.

BUT!

Fix *n* and $B \subsetneq$ Prop. Take $q \notin B$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

So LFC can distinguish all our countermodels.

What do EF Games for LFC correspond to?

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

What do EF Games for LFC correspond to?

Definition (Strongly connected component)

Let $\mathfrak{F} = (W, R)$ and $W \in A$. SCC(s) is the smallest subgraph $\mathfrak{G} = (W', R')$ of \mathfrak{F} such that if there is a path in \mathfrak{F} from s to t, and from t to s, then $t \in W'$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What do EF Games for LFC correspond to?

Definition (Strongly connected component)

Let $\mathfrak{F} = (W, R)$ and $W \in A$. SCC(s) is the smallest subgraph $\mathfrak{G} = (W', R')$ of \mathfrak{F} such that if there is a path in \mathfrak{F} from s to t, and from t to s, then $t \in W'$.

Definition (Isobisimulation)

Let $\mathfrak{M}_1 = (W_1, R_1, V_1)$ and $\mathfrak{M}_2 = (W_2, R_2, V_2)$. A relation $Z \subseteq W_1 \times W_2$ is an *isobisimulation* if the following clauses hold: Non-empty $Z \neq \emptyset$

Agree If $s_1 Z s_2$ then $V_1(s_1) = V_2(s_2)$.

Zig If s_1Zs_2 and $R_1s_1t_1$ then there is t_2 with $R_2s_2t_2$.

Zag If s_1Zs_2 and $R_2s_2t_2$ then there is t_1 with $R_1s_1t_1$.

Isomorphism If $s_1 Z s_2$ then there is an isomorphism

 $f: SCC(s_1) \rightarrow SCC(s_2)$ such that $f(s_1) = s_2$.

Theorem

For finite pointed models \mathfrak{M}_1, s_1 and \mathfrak{M}_2, s_2 , the following are equivalent:

- 1. There is an isobisimulation Z with s_1Zs_2 .
- 2. Duplicator has a winning strategy in $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_1, V_2, s_1, s_2)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

3. For every $\varphi \in \mathcal{L}_{LFC}$ we have $\mathfrak{M}_1, s_1 \models \varphi$ iff $\mathfrak{M}_2, s_2 \models \varphi$.

Theorem

For finite pointed models \mathfrak{M}_1, s_1 and \mathfrak{M}_2, s_2 , the following are equivalent:

1. There is an isobisimulation Z with s_1Zs_2 .

2. Duplicator has a winning strategy in $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_1, V_2, s_1, s_2)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

3. For every $\varphi \in \mathcal{L}_{LFC}$ we have $\mathfrak{M}_1, \mathfrak{s}_1 \models \varphi$ iff $\mathfrak{M}_2, \mathfrak{s}_2 \models \varphi$.

Proof idea.

Theorem

For finite pointed models \mathfrak{M}_1, s_1 and \mathfrak{M}_2, s_2 , the following are equivalent:

- 1. There is an isobisimulation Z with s_1Zs_2 .
- 2. Duplicator has a winning strategy in $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_1, V_2, s_1, s_2)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

3. For every $\varphi \in \mathcal{L}_{LFC}$ we have $\mathfrak{M}_1, \mathfrak{s}_1 \models \varphi$ iff $\mathfrak{M}_2, \mathfrak{s}_2 \models \varphi$.

Proof idea.

▶ $2 \Rightarrow 3$ was mentioned above.

Theorem

For finite pointed models \mathfrak{M}_1 , s_1 and \mathfrak{M}_2 , s_2 , the following are equivalent:

- 1. There is an isobisimulation Z with s_1Zs_2 .
- 2. Duplicator has a winning strategy in $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_1, V_2, s_1, s_2)$.
- 3. For every $\varphi \in \mathcal{L}_{LFC}$ we have $\mathfrak{M}_1, \mathfrak{s}_1 \models \varphi$ iff $\mathfrak{M}_2, \mathfrak{s}_2 \models \varphi$.

Proof idea.

- ▶ $2 \Rightarrow 3$ was mentioned above.
- S ⇒ 2 is by standard techniques: if Spoiler has a winning strategy, we use it to construct a distinguishing formula.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem

For finite pointed models \mathfrak{M}_1 , s_1 and \mathfrak{M}_2 , s_2 , the following are equivalent:

- 1. There is an isobisimulation Z with s_1Zs_2 .
- 2. Duplicator has a winning strategy in $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_1, V_2, s_1, s_2)$.
- 3. For every $\varphi \in \mathcal{L}_{LFC}$ we have $\mathfrak{M}_1, \mathfrak{s}_1 \models \varphi$ iff $\mathfrak{M}_2, \mathfrak{s}_2 \models \varphi$.

Proof idea.

- $2 \Rightarrow 3$ was mentioned above.
- 3 ⇒ 2 is by standard techniques: if Spoiler has a winning strategy, we use it to construct a distinguishing formula.
- ► 1 ⇒ 2: Duplicator follows the isobisimulation. Spoiler's valuation-change move only affects repeat visits when we're guaranteed to be in an isomorphic component.

Theorem

For finite pointed models \mathfrak{M}_1 , s_1 and \mathfrak{M}_2 , s_2 , the following are equivalent:

- 1. There is an isobisimulation Z with s_1Zs_2 .
- 2. Duplicator has a winning strategy in $EF(\mathfrak{F}_1, \mathfrak{F}_2, V_1, V_2, s_1, s_2)$.
- 3. For every $\varphi \in \mathcal{L}_{LFC}$ we have $\mathfrak{M}_1, \mathfrak{s}_1 \models \varphi$ iff $\mathfrak{M}_2, \mathfrak{s}_2 \models \varphi$.

Proof idea.

- $2 \Rightarrow 3$ was mentioned above.
- 3 ⇒ 2 is by standard techniques: if Spoiler has a winning strategy, we use it to construct a distinguishing formula.
- ► 1 ⇒ 2: Duplicator follows the isobisimulation. Spoiler's valuation-change move only affects repeat visits when we're guaranteed to be in an isomorphic component.
- ► 2 ⇒ 1: Use Duplicator's strategy to build an isobisimulation. Key idea: Spoiler can label all the vertices of a SCC.

$M \preceq LFC$ on finite models

Theorem

Let \mathfrak{M}_1, s_1 and \mathfrak{M}_2, s_2 be finite pointed models, and let Z be an isobisimulation with s_1Zs_2 . Then for all $\varphi \in \mathcal{L}_M$,

 $\mathfrak{M}_1, \emptyset, \mathfrak{s}_1 \models_{\mathsf{M}} \varphi \quad iff \quad \mathfrak{M}_2, \emptyset, \mathfrak{s}_2 \models_{\mathsf{M}} \varphi.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$M \preceq LFC$ on finite models

Theorem

Let \mathfrak{M}_1, s_1 and \mathfrak{M}_2, s_2 be finite pointed models, and let Z be an isobisimulation with s_1Zs_2 . Then for all $\varphi \in \mathcal{L}_M$,

 $\mathfrak{M}_1, \emptyset, \mathfrak{s}_1 \models_{\mathsf{M}} \varphi \quad iff \quad \mathfrak{M}_2, \emptyset, \mathfrak{s}_2 \models_{\mathsf{M}} \varphi.$

Proof.

Similar to that for LFC. Duplicator's strategy is just to follow the isobisimulation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$M \preceq LFC$ on finite models

Theorem

Let \mathfrak{M}_1, s_1 and \mathfrak{M}_2, s_2 be finite pointed models, and let Z be an isobisimulation with s_1Zs_2 . Then for all $\varphi \in \mathcal{L}_M$,

 $\mathfrak{M}_1, \emptyset, \mathfrak{s}_1 \models_{\mathsf{M}} \varphi \quad iff \quad \mathfrak{M}_2, \emptyset, \mathfrak{s}_2 \models_{\mathsf{M}} \varphi.$

Proof.

Similar to that for LFC. Duplicator's strategy is just to follow the isobisimulation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Corollary M \leq LFC on finite models.

Is M more expressive than LFC?

Is M more expressive than LFC?

Theorem

 $\mathsf{LFC} \not\leq \mathsf{M}.$

Proof.

Adaptation of proof in Areces et al. (2011). Uses infinite models.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Is M more expressive than LFC?

Theorem

 $\mathsf{LFC} \not\leq \mathsf{M}.$

Proof.

Adaptation of proof in Areces et al. (2011). Uses infinite models.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem LFC ≰ M for finite models. Proof.

Adaptation of proof in Areces et al. (2011).

Is M more expressive than LFC?

Theorem

 $\mathsf{LFC} \not\leq \mathsf{M}.$

Proof.

Adaptation of proof in Areces et al. (2011). Uses infinite models.

Theorem LFC \leq M for finite models.

Proof. Adaptation of proof in Areces et al. (2011).

 $\mathsf{LFC} \stackrel{?}{\preceq} \mathsf{M}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Open questions

Expressive Power

- What is the relationship between M and isobisimulation?
- ► Is LFC \leq M?
- What other situations do \leq and \leq give different judgements?
- What is the relationship between other logics (e.g. Hybrid logic) and isobisimulation?
- Restricted tree model property? Decidability for classes of models?

General

- What weakenings of LFC will make it decidable?
- What is the exact relationship between LFC and Nash equilibria for BNGs? Can we say the logic of Nash equilibria is undecidable?

Thank you

Propositional formulae, with agents controlling a subset of the atomic variables: Coalition Logics of Propositional Control (van der Hoek and Wooldridge 2005), Boolean Games (Harrenstein et al. 2001).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Propositional formulae, with agents controlling a subset of the atomic variables: Coalition Logics of Propositional Control (van der Hoek and Wooldridge 2005), Boolean Games (Harrenstein et al. 2001).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Network structure, changes to global truth value of proposition: Public Announcement Logic.

- Propositional formulae, with agents controlling a subset of the atomic variables: Coalition Logics of Propositional Control (van der Hoek and Wooldridge 2005), Boolean Games (Harrenstein et al. 2001).
- Network structure, changes to global truth value of proposition: Public Announcement Logic.
- PDL variant where atomic programs are propositional assignments: Dynamic Logic of Propositional Assignments (Balbiani, Herzig, and Troquard 2013)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Propositional formulae, with agents controlling a subset of the atomic variables: Coalition Logics of Propositional Control (van der Hoek and Wooldridge 2005), Boolean Games (Harrenstein et al. 2001).
- Network structure, changes to global truth value of proposition: Public Announcement Logic.
- PDL variant where atomic programs are propositional assignments: Dynamic Logic of Propositional Assignments (Balbiani, Herzig, and Troquard 2013)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 PDL with local and global assignments to propositional variables: PDL+GLA (Tiomkin and Makowsky 1985) Areces, Carlos et al. (June 2011). "The Expressive Power of Memory Logics". In: *The Review of Symbolic Logic* 4.02, pp. 290–318.

 Balbiani, Philippe, Andreas Herzig, and Nicolas Troquard (2013). "Dynamic Logic of Propositional Assignments: A Well-Behaved Variant of PDL". In: Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS '13. Washington, DC, USA: IEEE Computer Society, pp. 143–152. ISBN: 978-0-7695-5020-6.

Harrenstein, Paul et al. (2001). "Boolean Games". In: Proceedings of the 8th Conference on Theoretical Aspects of Rationality and Knowledge. Morgan Kaufmann Publishers Inc., pp. 287–298.
 Mera, Sergio Fernando (2009). "Modal Memory Logics". PhD Thesis. Buenos Aires: Universidad de Buenos Aires. 165 pp.

Tiomkin, M. L. and J. A. Makowsky (Jan. 1, 1985). "Propositional Dynamic Logic with Local Assignment". In: *Theoretical Computer Science* 36, pp. 71–87.

Van der Hoek, Wiebe and Michael Wooldridge (May 2005). "On the Logic of Cooperation and Propositional Control". In:

$\models \Box^n p \leftrightarrow (\bigoplus \Box^n p \lor (\bigoplus (p \leftrightarrow \Box^n p) \land p)))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶