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Boolean Games

I We have a set Prop of propositions.
I Each player controls a subset of Prop.
I Each player s has a formula γs of propositional logic as their

goal.
I By choosing the valuation on their propositions, s tries to

make γs true.



Boolean Network Games

I Players are arranged in a network.
I Each player controls all the propositions at their position.
I Each player s has a formula γs of modal logic as their goal.
I By choosing the valuation at their position, s tries to make γs

true.



BNGs: Strategies and equilibria

Definition (Strategy (profile))
A strategy is a subset of Prop. A strategy profile is a function
V : W → 2Prop.

Definition (Nash equilibrium)
A strategy profile V is a Nash equilibrium if there is no player who
can do better by changing strategy.
How can we make this definition more precise? We need a logical
way to talk about changing strategies.



BNGs: Strategies and equilibria

Definition (Strategy (profile))
A strategy is a subset of Prop. A strategy profile is a function
V : W → 2Prop.

Definition (Nash equilibrium)
A strategy profile V is a Nash equilibrium if there is no player who
can do better by changing strategy.

How can we make this definition more precise? We need a logical
way to talk about changing strategies.



BNGs: Strategies and equilibria

Definition (Strategy (profile))
A strategy is a subset of Prop. A strategy profile is a function
V : W → 2Prop.

Definition (Nash equilibrium)
A strategy profile V is a Nash equilibrium if there is no player who
can do better by changing strategy.
How can we make this definition more precise? We need a logical
way to talk about changing strategies.



Local Fact Change (LFC)

Define a logic for BNG equilibria.

Definition (LLFC)
ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | ♦ϕ | ϕ

Definition (Truth in a model)
F,V , s |= p iff p ∈ V (s)
F,V , s |= ¬ϕ iff F,V , s 6|= ϕ
F,V , s |= (ϕ ∧ ψ) iff F,V , s |= ϕ and F,V , s |= ψ
F,V , s |= ♦ϕ iff F,V , t |= ϕ for some t with Rst
F,V , s |= ϕ iff F,V s

A, s |= ϕ for some A ⊆ Prop

changes the valuation but only at the current state.
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Equilibria and other properties

I V is a Nash equilibrium iff F,V , s |= γs → γs for every
player s.

I For propositional ϕ, ¬ ¬ϕ is true iff ϕ is valid.
I LFC is strictly more expressive than basic modal logic:

♦p → ♦p is valid on a frame iff it is irreflexive.
I How expressive is it?



Equilibria and other properties

I V is a Nash equilibrium iff F,V , s |= γs → γs for every
player s.

I For propositional ϕ, ¬ ¬ϕ is true iff ϕ is valid.

I LFC is strictly more expressive than basic modal logic:
♦p → ♦p is valid on a frame iff it is irreflexive.

I How expressive is it?



Equilibria and other properties

I V is a Nash equilibrium iff F,V , s |= γs → γs for every
player s.

I For propositional ϕ, ¬ ¬ϕ is true iff ϕ is valid.
I LFC is strictly more expressive than basic modal logic:

♦p → ♦p is valid on a frame iff it is irreflexive.

I How expressive is it?



Equilibria and other properties

I V is a Nash equilibrium iff F,V , s |= γs → γs for every
player s.

I For propositional ϕ, ¬ ¬ϕ is true iff ϕ is valid.
I LFC is strictly more expressive than basic modal logic:

♦p → ♦p is valid on a frame iff it is irreflexive.
I How expressive is it?



Talk Overview

Boolean (network) games

Local Fact Change

Undecidability via Memory Logic

Measuring expressive power

Conclusion



Memory Logic (M)

Definition (LM)
ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | ♦ϕ

| r ϕ | k

Definition (Truth in a model (Memory Logic))

F,V ,C , s |=M r ϕ iff F,V ,C ∪ {s}, s |=M ϕ

F,V ,C , s |=M k iff s ∈ C

Theorem
The satisfiability problem for memory logic is undecidable (Mera
2009).
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Undecidability of LFC

Main idea
We translate satisfiability problems for M to satisfiability problems
for LFC.

I Treat the memory set C as a proposition q.
I Define an operator q in LFC which makes q true.
I T ( k ) = q and T ( r ϕ) = q T (ϕ).

Theorem
The satisfiability problem for LFC is undecidable.

There are many more details. In particular, the translation is not
direct. How do M and LFC compare?
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Defining expressive power comparisons

Definition (≤, “translation”)
A ≤ B if there is a T : LA → LB such that for all models M,

M |=A ϕ iff M |=B T(ϕ).

Definition (�, “no more distinctions”)
A � B if for every pair of models M1,M2, if there is ϕ ∈ LA such
that M1 |=A ϕ and M2 6|=A ϕ then there is ψ ∈ LB such that
M1 |=B ψ and M2 6|=B ψ.

Fact
If A ≤ B then A � B.

Proof.
Take T(ϕ) for ψ.
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Comparing M and LFC

I A 6� B iff there is a pair of models M1,M2 that A can
distinguish that B cannot.

I To compare M and LFC, we need a modal invariance notion.
I When are two models indistinguishable for LFC?



Comparing M and LFC

I A 6� B iff there is a pair of models M1,M2 that A can
distinguish that B cannot.

I To compare M and LFC, we need a modal invariance notion.
I When are two models indistinguishable for LFC?



Comparing M and LFC

I A 6� B iff there is a pair of models M1,M2 that A can
distinguish that B cannot.

I To compare M and LFC, we need a modal invariance notion.

I When are two models indistinguishable for LFC?



Comparing M and LFC

I A 6� B iff there is a pair of models M1,M2 that A can
distinguish that B cannot.

I To compare M and LFC, we need a modal invariance notion.
I When are two models indistinguishable for LFC?



Ehrenfeucht-Fraïssé Games for LFC
EF (F1,F2,V1,V2, s1, s2)

I If V1(s1) 6= V2(s2) then Spoiler wins.
I Else if both s1 and s2 have no neighbours then Duplicator

wins.
I Else Spoiler chooses one of the following two moves:

1. Spoiler picks A ⊆ Prop. We play EF (F1,F2,V1
s1
A ,V2

s2
A , s1, s2).

2. The following occur in order:
2.1 Spoiler chooses i ∈ {1, 2} (j is the other)
2.2 Spoiler chooses ti ∈ Wi such that Risi ti .
2.3 If there is no tj with Rjsjtj , Spoiler wins. Otherwise,

Duplicator picks such a tj . We play EF (F1,F2,V1,V2, t1, t2).

In an infinite game, Duplicator wins.

Fact
If Duplicator has a winning strategy then for all ϕ,

F1,V1, s1 |=LFC ϕ iff F2,V2, s2 |=LFC ϕ.
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If Duplicator has a winning strategy then for all ϕ,

F1,V1, s1 |=LFC ϕ iff F2,V2, s2 |=LFC ϕ.
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M 6≤ LFC (cont.)

G1 s

2Prop2Prop2Prop

ω

G2 t

2Prop2Prop2Prop

ω

Duplicator has a winning strategy in LFC
I s and t have the same valuation.
I Every node has a neighbour.
I For every node spoiler picks, there is an unvisited node with

the same valuation.



M 6≤ LFC (cont.)

I G1, ∅, s |=M r ♦ k and G2, ∅, t 6|=M r ♦ k

I For every ϕ, G1, s |=LFC ϕ iff G2, t |=LFC ϕ

I M 6� LFC
I M 6≤ LFC

Definition (�)
A � B if for every pair of models M1,M2, if there is ϕ ∈ LA such
that M1 |=A ϕ and M2 6|=A ϕ then there is ψ ∈ LB such that
M1 |=B ψ and M2 6|=B ψ.
What about finite models?
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Restricted EF Games for LFC
EFR(F1,F2,V1,V2, s1, s2)

I If V1(s1) 6= V2(s2) then Spoiler wins.
I Else if both s1 and s2 have no neighbours then Duplicator

wins.
I Else Spoiler chooses one of the following two moves:

1. Spoiler picks A ⊆ Prop. We play EF (F1,F2,V1
s1
A ,V2

s2
A , s1, s2).

2. The following occur in order:
2.1 Spoiler chooses i ∈ {1, 2} (j is the other)
2.2 Spoiler chooses ti ∈ Wi such that Risi ti .
2.3 If there is no tj with Rjsjtj , Spoiler wins. Otherwise,

Duplicator picks such a tj . We play EF (F1,F2,V1,V2, t1, t2).

In an infinite game, Duplicator wins.

Fact
If Duplicator has a winning strategy, MD(ϕ) ≤ n and At(ϕ) ⊆ B,

F1,V1, s1 |=LFC ϕ iff F2,V2, s2 |=LFC ϕ.
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Fact
If Duplicator has a winning strategy, MD(ϕ) ≤ n and At(ϕ) ⊆ B,

F1,V1, s1 |=LFC ϕ iff F2,V2, s2 |=LFC ϕ.



Restricted EF Games for LFC
EFR(F1,F2,V1,V2, s1, s2,B, n)
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F1,V1, s1 |=LFC ϕ iff F2,V2, s2 |=LFC ϕ.



Restricted EF Games for LFC
EFR(F1,F2,V1,V2, s1, s2,B, n)

I If V1(s1) 6= V2(s2) then Spoiler wins.
I Else if both s1 and s2 have no neighbours then Duplicator

wins.
I Else Spoiler chooses one of the following two moves:

1. Spoiler picks A ⊆ B. We play EF (F1,F2,V1
s1
A ,V2

s2
A , s1, s2).

2. The following occur in order:
2.1 Spoiler chooses i ∈ {1, 2} (j is the other)
2.2 Spoiler chooses ti ∈ Wi such that Risi ti .
2.3 If there is no tj with Rjsjtj , Spoiler wins. Otherwise,

Duplicator picks such a tj . We play EF (F1,F2,V1,V2, t1, t2).

If Spoiler does not win in n rounds, Duplicator wins.

Fact
If Duplicator has a winning strategy, MD(ϕ) ≤ n and At(ϕ) ⊆ B,

F1,V1, s1 |=LFC ϕ iff F2,V2, s2 |=LFC ϕ.



M 6≤ LFC on finite models

Suppose T : LM → LLFC , and ψ = T ( r ♦ k ).

Let B = At(ψ) and n = MD(ψ).

G1 s

2B2B2B2B

n

G2 t

2B2B2B2B

n

I Duplicator has the same winning strategy as before in
EFR(G1,G2,V1,V2, s, t,B, n).
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M 6≤ LFC on finite models (cont.)

I For any translation T , we can construct a pair G1,G2 such
that

1. G1, ∅, s |=M r ♦ k
2. G2, ∅, t 6|=M r ♦ k
3. G1, s |=LFC T ( r ♦ k ) iff G2, t |=LFC T ( r ♦ k )

I So no translation satisfies the definition of ≤.
I So M 6≤ LFC on finite models.

Definition (≤)
A ≤ B if there is a T : LA → LB such that for all models M,

M |=A ϕ iff M |=B T(ϕ).
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M 6≤ LFC on finite models (cont.)
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BUT!
Fix n and B ( Prop. Take q /∈ B.

G1 s
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G1, s |=LFC ♦q

G2 t
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n

G2, t 6|=LFC ♦q

I So LFC can distinguish all our countermodels.
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What do EF Games for LFC correspond to?

Definition (Strongly connected component)
Let F = (W ,R) and W ∈ A. SCC(s) is the smallest subgraph
G = (W ′,R ′) of F such that if there is a path in F from s to t,
and from t to s, then t ∈ W ′.

Definition (Isobisimulation)
Let M1 = (W1,R1,V1) and M2 = (W2,R2,V2). A relation
Z ⊆ W1 × W2 is an isobisimulation if the following clauses hold:

Non-empty Z 6= ∅
Agree If s1Zs2 then V1(s1) = V2(s2).

Zig If s1Zs2 and R1s1t1 then there is t2 with R2s2t2.
Zag If s1Zs2 and R2s2t2 then there is t1 with R1s1t1.

Isomorphism If s1Zs2 then there is an isomorphism
f : SCC(s1) → SCC(s2) such that f (s1) = s2.
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Isobisimulation and LFC
Theorem
For finite pointed models M1, s1 and M2, s2, the following are
equivalent:

1. There is an isobisimulation Z with s1Zs2.
2. Duplicator has a winning strategy in EF (F1,F2,V1,V2, s1, s2).
3. For every ϕ ∈ LLFC we have M1, s1 |= ϕ iff M2, s2 |= ϕ.

Proof idea.

I 2 ⇒ 3 was mentioned above.
I 3 ⇒ 2 is by standard techniques: if Spoiler has a winning

strategy, we use it to construct a distinguishing formula.
I 1 ⇒ 2: Duplicator follows the isobisimulation. Spoiler’s

valuation-change move only affects repeat visits - when we’re
guaranteed to be in an isomorphic component.

I 2 ⇒ 1: Use Duplicator’s strategy to build an isobisimulation.
Key idea: Spoiler can label all the vertices of a SCC.
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M � LFC on finite models

Theorem
Let M1, s1 and M2, s2 be finite pointed models, and let Z be an
isobisimulation with s1Zs2. Then for all ϕ ∈ LM,

M1, ∅, s1 |=M ϕ iff M2, ∅, s2 |=M ϕ.

Proof.
Similar to that for LFC. Duplicator’s strategy is just to follow the
isobisimulation.

Corollary
M � LFC on finite models.
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LFC 6≤ M on (in)finite models

Is M more expressive than LFC?

Theorem
LFC 6≤ M.

Proof.
Adaptation of proof in Areces et al. (2011). Uses infinite
models.

Theorem
LFC 6≤ M for finite models.

Proof.
Adaptation of proof in Areces et al. (2011).

LFC
?
� M
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Open questions

Expressive Power
I What is the relationship between M and isobisimulation?
I Is LFC � M?
I What other situations do ≤ and � give different judgements?
I What is the relationship between other logics (e.g. Hybrid

logic) and isobisimulation?
I Restricted tree model property? Decidability for classes of

models?

General
I What weakenings of LFC will make it decidable?
I What is the exact relationship between LFC and Nash

equilibria for BNGs? Can we say the logic of Nash equilibria is
undecidable?



Thank you
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