Local Fact Change Logic, Memory Logic and Expressive Power

Declan Thompson
Stanford University

Tsinghua University, 16 October 2019

Talk Overview

Boolean (network) games
Local Fact Change

Undecidability via Memory Logic

Measuring expressive power

Conclusion

Boolean Games

- We have a set Prop of propositions.
- Each player controls a subset of Prop.
- Each player s has a formula γ_{s} of propositional logic as their goal.
- By choosing the valuation on their propositions, s tries to make γ_{s} true.

Boolean Network Games

- Players are arranged in a network.
- Each player controls all the propositions at their position.
- Each player s has a formula γ_{s} of modal logic as their goal.
- By choosing the valuation at their position, s tries to make γ_{s} true.

BNGs: Strategies and equilibria

Definition (Strategy (profile))
A strategy is a subset of Prop. A strategy profile is a function $V: W \rightarrow 2^{\text {Prop }}$.

BNGs: Strategies and equilibria

Definition (Strategy (profile))
A strategy is a subset of Prop. A strategy profile is a function $V: W \rightarrow 2^{\text {Prop }}$.

Definition (Nash equilibrium)
A strategy profile V is a Nash equilibrium if there is no player who can do better by changing strategy.

BNGs: Strategies and equilibria

Definition (Strategy (profile))
A strategy is a subset of Prop. A strategy profile is a function $V: W \rightarrow 2^{\text {Prop }}$.

Definition (Nash equilibrium)
A strategy profile V is a Nash equilibrium if there is no player who can do better by changing strategy.
How can we make this definition more precise? We need a logical way to talk about changing strategies.

Local Fact Change (LFC)

Define a logic for BNG equilibria.

Local Fact Change (LFC)

Define a logic for BNG equilibria.
Definition $\left(\mathcal{L}_{L F C}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi) \mid \diamond \varphi
$$

Local Fact Change (LFC)

Define a logic for BNG equilibria.
Definition $\left(\mathcal{L}_{L F C}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\diamond \varphi| \bigcirc \varphi
$$

Local Fact Change (LFC)

Define a logic for BNG equilibria.
Definition $\left(\mathcal{L}_{L F C}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\diamond \varphi| \bigcirc \varphi
$$

Definition (Truth in a model)

Local Fact Change (LFC)

Define a logic for BNG equilibria.
Definition $\left(\mathcal{L}_{L F C}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\diamond \varphi| \bigcirc \varphi
$$

Definition (Truth in a model) \mathfrak{F}

Local Fact Change (LFC)

Define a logic for BNG equilibria.
Definition $\left(\mathcal{L}_{L F C}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\diamond \varphi| \bigcirc \varphi
$$

Definition (Truth in a model)
\mathfrak{F}, V

Local Fact Change (LFC)

Define a logic for BNG equilibria.
Definition $\left(\mathcal{L}_{L F C}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\diamond \varphi| \bigcirc \varphi
$$

Definition (Truth in a model)
\mathfrak{F}, V, s

Local Fact Change (LFC)

Define a logic for BNG equilibria.
Definition $\left(\mathcal{L}_{L F C}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\diamond \varphi| \bigcirc \varphi
$$

Definition (Truth in a model)
$\mathfrak{F}, V, s \models p$
iff $\quad p \in V(s)$

Local Fact Change (LFC)

Define a logic for BNG equilibria.
Definition $\left(\mathcal{L}_{L F C}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\diamond \varphi| \bigcirc \varphi
$$

Definition (Truth in a model)
$\mathfrak{F}, V, s=p$
iff

$$
p \in V(s)
$$

$\mathfrak{F}, V, s=\neg \varphi$
iff $\mathfrak{F}, V, s \not \vDash \varphi$
$\mathfrak{F}, V, s \models(\varphi \wedge \psi) \quad$ iff $\quad \mathfrak{F}, V, s \models \varphi$ and $\mathfrak{F}, V, s \models \psi$
$\mathfrak{F}, V, s \vDash \diamond \varphi \quad$ iff $\quad \mathfrak{F}, V, t \vDash \varphi$ for some t with Rst

Local Fact Change (LFC)

Define a logic for BNG equilibria.
Definition $\left(\mathcal{L}_{L F C}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\diamond \varphi| \bigcirc \varphi
$$

Definition (Truth in a model)
$\mathfrak{F}, V, s \models p$
$\mathfrak{F}, V, s \models \neg \varphi$
iff
$p \in V(s)$
$\mathcal{F}, V, s)=(\varphi$
iff $\mathfrak{F}, V, s \not \vDash \varphi$
$\mathfrak{F}, V, s \models(\varphi \wedge \psi) \quad$ iff $\quad \mathfrak{F}, V, s \models \varphi$ and $\mathfrak{F}, V, s \models \psi$
$\mathfrak{F}, V, s \vDash \Delta \varphi \quad$ iff $\quad \mathfrak{F}, V, t=\varphi$ for some t with Rst
$\mathfrak{F}, V, s \models \bigcirc \varphi \quad$ iff $\quad \mathfrak{F}, V_{A}^{s}, s \models \varphi$ for some $A \subseteq$ Prop

Local Fact Change (LFC)

Define a logic for BNG equilibria.
Definition $\left(\mathcal{L}_{L F C}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\diamond \varphi| \bigcirc \varphi
$$

Definition (Truth in a model)

$$
\begin{aligned}
& \mathfrak{F}, V, s \neq p \\
& \mathfrak{F}, V, s \equiv \neg \varphi
\end{aligned}
$$

iff

$$
p \in V(s)
$$

$$
\text { iff } \quad \mathfrak{F}, V, s \not \vDash \varphi
$$

$$
\mathfrak{F}, V, s=(\varphi \wedge \psi) \quad \text { iff } \quad \mathfrak{F}, V, s \models \varphi \text { and } \mathfrak{F}, V, s \models \psi
$$

$$
\mathfrak{F}, V, s \models \diamond \varphi \quad \text { iff } \quad \mathfrak{F}, V, t=\varphi \text { for some } t \text { with Rst }
$$

$$
\mathfrak{F}, V, s \models \bigcirc \varphi \quad \text { iff } \quad \mathfrak{F}, V_{A}^{s}, s \models \varphi \text { for some } A \subseteq \text { Prop }
$$changes the valuation but only at the current state.

Example

$$
\begin{array}{ll}
\models B & \models R, B, Y \quad \models B, Y \\
& \longleftrightarrow \\
\models R \quad & \models R, B \quad \models R, Y
\end{array}
$$

Example

$$
\begin{array}{ll}
\models B & \models R, B, Y \quad \models B, Y \\
& \longleftrightarrow \\
\models R \quad & \models R, B \quad \models R, Y
\end{array}
$$

$\widehat{\wedge} \vDash B \wedge \bigcirc \neg B$

Example

$$
\begin{aligned}
& \vDash B \quad \vDash R, B, Y \quad \vDash B, Y
\end{aligned}
$$

$$
\begin{aligned}
& \vDash R \quad \vDash R, B \quad \vDash R, Y
\end{aligned}
$$

$\widehat{\mathbf{N}} \vDash B \wedge \bigcirc \neg B \quad$ ヘ $\vDash \bigcirc \diamond \square \neg Y$

Example

$$
\neq B
$$

$\boldsymbol{N}_{\models B \wedge \bigcirc \neg B \quad \text { ヘ }}^{=\bigcirc \diamond \square \neg Y \quad \text { ヘ } \vDash \diamond \bigcirc \diamond \diamond \neg(R \vee B \vee Y)}$

Equilibria and other properties

- V is a Nash equilibrium iff $\mathfrak{F}, V, s \models \bigcirc \gamma_{s} \rightarrow \gamma_{s}$ for every player s.

Equilibria and other properties

- V is a Nash equilibrium iff $\mathfrak{F}, V, s \models \bigcirc \gamma_{s} \rightarrow \gamma_{s}$ for every player s.
- For propositional $\varphi, \neg \bigcirc \neg \varphi$ is true iff φ is valid.

Equilibria and other properties

- V is a Nash equilibrium iff $\mathfrak{F}, V, s \models \bigcirc \gamma_{s} \rightarrow \gamma_{s}$ for every player s.
- For propositional $\varphi, \neg \bigcirc \neg \varphi$ is true iff φ is valid.
- LFC is strictly more expressive than basic modal logic: $\bigcirc \diamond p \rightarrow \diamond p$ is valid on a frame iff it is irreflexive.

Equilibria and other properties

- V is a Nash equilibrium iff $\mathfrak{F}, V, s \models \bigcirc \gamma_{s} \rightarrow \gamma_{s}$ for every player s.
- For propositional $\varphi, \neg \bigcirc \neg \varphi$ is true iff φ is valid.
- LFC is strictly more expressive than basic modal logic: $\bigcirc \diamond p \rightarrow \diamond p$ is valid on a frame iff it is irreflexive.
- How expressive is it?

Talk Overview

> Boolean (network) games

> Local Fact Change

Undecidability via Memory Logic

Measuring expressive power

Conclusion

Memory Logic (M)

Definition $\left(\mathcal{L}_{M}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi) \mid \diamond \varphi
$$

Memory Logic (M)

Definition $\left(\mathcal{L}_{M}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\diamond \varphi| \upharpoonright \varphi \mid \mathbb{k}
$$

Memory Logic (M)

Definition $\left(\mathcal{L}_{M}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\nabla \varphi| \mathbb{} \mid \mathbb{k}
$$

Definition (Truth in a model (Memory Logic))
\mathfrak{F}, V,

Memory Logic (M)

Definition $\left(\mathcal{L}_{M}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\nabla \varphi| \mathbb{} \mid \mathbb{k}
$$

Definition (Truth in a model (Memory Logic))
\mathfrak{F}, V, C,

Memory Logic (M)

Definition $\left(\mathcal{L}_{\mathrm{M}}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\nabla \varphi| \mathbb{} \mid \mathbb{k}
$$

Definition (Truth in a model (Memory Logic))

$$
\mathfrak{F}, V, C, s
$$

Memory Logic (M)

Definition $\left(\mathcal{L}_{\mathrm{M}}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\diamond \varphi| \upharpoonright \varphi \mid \mathbb{k}
$$

Definition (Truth in a model (Memory Logic))

$$
\mathfrak{F}, V, C, s \models_{\mathrm{M}}(\mathfrak{r} \varphi \quad \text { iff } \quad \mathfrak{F}, V, C \cup\{s\}, s \models \mathrm{M} \varphi
$$

Memory Logic (M)

Definition $\left(\mathcal{L}_{\mathrm{M}}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\nabla \varphi| \upharpoonright \varphi \mid \mathbb{k}
$$

Definition (Truth in a model (Memory Logic))

$$
\begin{array}{lll}
\mathfrak{F}, V, C, s \neq \mathrm{M} \mathbb{r} \varphi & \text { iff } & \mathfrak{F}, V, C \cup\{s\}, s \models \mathrm{M} \varphi \\
\mathfrak{F}, V, C, s \models \mathrm{M} \mathbb{K} & \text { iff } & s \in C
\end{array}
$$

Memory Logic (M)

Definition $\left(\mathcal{L}_{\mathrm{M}}\right)$

$$
\varphi::=p|\neg \varphi|(\varphi \wedge \varphi)|\diamond \varphi| \mathbb{} \mid \mathbb{k}
$$

Definition (Truth in a model (Memory Logic))

$$
\begin{array}{lll}
\mathfrak{F}, V, C, s \models_{\mathrm{M}}^{\mathfrak{r}} \varphi & \text { iff } & \mathfrak{F}, V, C \cup\{s\}, s \models \mathrm{M} \varphi \\
\mathfrak{F}, V, C, s \models_{\mathrm{M}} \mathfrak{k} & \text { iff } & s \in C
\end{array}
$$

Theorem
The satisfiability problem for memory logic is undecidable (Mera 2009).

Undecidability of LFC

Main idea
We translate satisfiability problems for M to satisfiability problems for LFC.

Undecidability of LFC

Main idea
We translate satisfiability problems for M to satisfiability problems for LFC.

- Treat the memory set C as a proposition q.

Undecidability of LFC

Main idea
We translate satisfiability problems for M to satisfiability problems for LFC.

- Treat the memory set C as a proposition q.
- Define an operator (q) in LFC which makes q true.

Undecidability of LFC

Main idea
We translate satisfiability problems for M to satisfiability problems for LFC.

- Treat the memory set C as a proposition q.
- Define an operator (q) in LFC which makes q true.
- $T(\mathbb{k})=q$ and $T(\mathbb{r} \varphi)=(9) T(\varphi)$.

Undecidability of LFC

Main idea
We translate satisfiability problems for M to satisfiability problems for LFC.

- Treat the memory set C as a proposition q.
- Define an operator (q) in LFC which makes q true.
- $T(\mathbb{k})=q$ and $T(\mathbb{C} \varphi)=(9) T(\varphi)$.

Theorem
The satisfiability problem for LFC is undecidable.

Undecidability of LFC

Main idea

We translate satisfiability problems for M to satisfiability problems for LFC.

- Treat the memory set C as a proposition q.
- Define an operator (q) in LFC which makes q true.
- $T(\mathbb{k})=q$ and $T(\mathbb{C} \varphi)=(9) T(\varphi)$.

Theorem
The satisfiability problem for LFC is undecidable.
There are many more details. In particular, the translation is not direct. How do M and LFC compare?

Talk Overview

> Boolean (network) games

> Local Fact Change

> Undecidability via Memory Logic

Measuring expressive power

Conclusion

Defining expressive power comparisons

Defining expressive power comparisons

Definition (\leq, "translation")
$\mathrm{A} \leq \mathrm{B}$ if there is a $\mathfrak{T}: \mathcal{L}_{\mathrm{A}} \rightarrow \mathcal{L}_{\mathrm{B}}$ such that for all models \mathfrak{M},

$$
\mathfrak{M} \models_{\mathrm{A}} \varphi \quad \text { iff } \quad \mathfrak{M} \models_{\mathrm{B}} \mathfrak{T}(\varphi) .
$$

Defining expressive power comparisons

Definition (\leq, "translation")
$\mathrm{A} \leq \mathrm{B}$ if there is a $\mathfrak{T}: \mathcal{L}_{\mathrm{A}} \rightarrow \mathcal{L}_{\mathrm{B}}$ such that for all models \mathfrak{M},

$$
\mathfrak{M} \models_{\mathrm{A}} \varphi \quad \text { iff } \quad \mathfrak{M} \models_{\mathrm{B}} \mathfrak{T}(\varphi) .
$$

$\mathrm{A} \preceq \mathrm{B}$ if for every pair of models $\mathfrak{M}_{1}, \mathfrak{M}_{2}$, if there is $\varphi \in \mathcal{L}_{\mathrm{A}}$ such that $\mathfrak{M}_{1}=_{\mathrm{A}} \varphi$ and $\mathfrak{M}_{2} \not \vDash_{\mathrm{A}} \varphi$ then there is $\psi \in \mathcal{L}_{\mathrm{B}}$ such that $\mathfrak{M}_{1} \models_{\mathrm{B}} \psi$ and $\mathfrak{M}_{2} \not \vDash_{\mathrm{B}} \psi$.

Defining expressive power comparisons

Definition (\leq, "translation")
$\mathrm{A} \leq \mathrm{B}$ if there is a $\mathfrak{T}: \mathcal{L}_{\mathrm{A}} \rightarrow \mathcal{L}_{\mathrm{B}}$ such that for all models \mathfrak{M},

$$
\mathfrak{M} \models_{\mathrm{A}} \varphi \quad \text { iff } \quad \mathfrak{M} \models_{\mathrm{B}} \mathfrak{T}(\varphi) .
$$

$\mathrm{A} \preceq \mathrm{B}$ if for every pair of models $\mathfrak{M}_{1}, \mathfrak{M}_{2}$, if there is $\varphi \in \mathcal{L}_{\mathrm{A}}$ such that $\mathfrak{M}_{1}=_{\mathrm{A}} \varphi$ and $\mathfrak{M}_{2} \not \vDash_{\mathrm{A}} \varphi$ then there is $\psi \in \mathcal{L}_{\mathrm{B}}$ such that $\mathfrak{M}_{1} \models_{\mathrm{B}} \psi$ and $\mathfrak{M}_{2} \not \vDash_{\mathrm{B}} \psi$.

Fact
If $\mathrm{A} \leq \mathrm{B}$ then $\mathrm{A} \preceq \mathrm{B}$.
Proof.
Take $\mathfrak{T}(\varphi)$ for ψ.

Comparing M and LFC

Comparing M and LFC

- $\mathrm{A} \npreceq \mathrm{B}$ iff there is a pair of models $\mathfrak{M}_{1}, \mathfrak{M}_{2}$ that A can distinguish that B cannot.

Comparing M and LFC

- $\mathrm{A} \npreceq \mathrm{B}$ iff there is a pair of models $\mathfrak{M}_{1}, \mathfrak{M}_{2}$ that A can distinguish that B cannot.
- To compare M and LFC, we need a modal invariance notion.

Comparing M and LFC

- $\mathrm{A} \npreceq \mathrm{B}$ iff there is a pair of models $\mathfrak{M}_{1}, \mathfrak{M}_{2}$ that A can distinguish that B cannot.
- To compare M and LFC, we need a modal invariance notion.
- When are two models indistinguishable for LFC?

Ehrenfeucht-Fraïssé Games for LFC

$$
E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}\right)
$$

Ehrenfeucht-Fraïssé Games for LFC

$E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}\right)$

- If $V_{1}\left(s_{1}\right) \neq V_{2}\left(s_{2}\right)$ then Spoiler wins.

Ehrenfeucht-Fraïssé Games for LFC

$E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}\right)$

- If $V_{1}\left(s_{1}\right) \neq V_{2}\left(s_{2}\right)$ then Spoiler wins.
- Else if both s_{1} and s_{2} have no neighbours then Duplicator wins.

Ehrenfeucht-Fraïssé Games for LFC

$E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}\right)$

- If $V_{1}\left(s_{1}\right) \neq V_{2}\left(s_{2}\right)$ then Spoiler wins.
- Else if both s_{1} and s_{2} have no neighbours then Duplicator wins.
- Else Spoiler chooses one of the following two moves:

Ehrenfeucht-Fraïssé Games for LFC

$E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}\right)$

- If $V_{1}\left(s_{1}\right) \neq V_{2}\left(s_{2}\right)$ then Spoiler wins.
- Else if both s_{1} and s_{2} have no neighbours then Duplicator wins.
- Else Spoiler chooses one of the following two moves:

1. Spoiler picks $A \subseteq$ Prop. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}^{s_{1}}, V_{2}^{s_{A}}, s_{1}, s_{2}\right)$.

Ehrenfeucht-Fraïssé Games for LFC

$E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}\right)$

- If $V_{1}\left(s_{1}\right) \neq V_{2}\left(s_{2}\right)$ then Spoiler wins.
- Else if both s_{1} and s_{2} have no neighbours then Duplicator wins.
- Else Spoiler chooses one of the following two moves:

1. Spoiler picks $A \subseteq$ Prop. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}^{s_{1}}, V_{2}^{s_{A}}, s_{1}, s_{2}\right)$.
2. The following occur in order:
2.1 Spoiler chooses $i \in\{1,2\}$ (j is the other)
2.2 Spoiler chooses $t_{i} \in W_{i}$ such that $R_{i} s_{i} t_{i}$.
2.3 If there is no t_{j} with $R_{j} s_{j} t_{j}$, Spoiler wins. Otherwise, Duplicator picks such a t_{j}. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, t_{1}, t_{2}\right)$.

Ehrenfeucht-Fraïssé Games for LFC

$E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}\right)$

- If $V_{1}\left(s_{1}\right) \neq V_{2}\left(s_{2}\right)$ then Spoiler wins.
- Else if both s_{1} and s_{2} have no neighbours then Duplicator wins.
- Else Spoiler chooses one of the following two moves:

1. Spoiler picks $A \subseteq$ Prop. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}^{s_{1}}, V_{2}^{s_{A}}, s_{1}, s_{2}\right)$.
2. The following occur in order:
2.1 Spoiler chooses $i \in\{1,2\}$ (j is the other)
2.2 Spoiler chooses $t_{i} \in W_{i}$ such that $R_{i} s_{i} t_{i}$.
2.3 If there is no t_{j} with $R_{j} s_{j} t_{j}$, Spoiler wins. Otherwise, Duplicator picks such a t_{j}. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, t_{1}, t_{2}\right)$.

In an infinite game, Duplicator wins.

Ehrenfeucht-Fraïssé Games for LFC

$E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}\right)$

- If $V_{1}\left(s_{1}\right) \neq V_{2}\left(s_{2}\right)$ then Spoiler wins.
- Else if both s_{1} and s_{2} have no neighbours then Duplicator wins.
- Else Spoiler chooses one of the following two moves:

1. Spoiler picks $A \subseteq$ Prop. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}^{s_{1}}, V_{2}^{s_{A}}, s_{1}, s_{2}\right)$.
2. The following occur in order:
2.1 Spoiler chooses $i \in\{1,2\}$ (j is the other)
2.2 Spoiler chooses $t_{i} \in W_{i}$ such that $R_{i} s_{i} t_{i}$.
2.3 If there is no t_{j} with $R_{j} s_{j} t_{j}$, Spoiler wins. Otherwise, Duplicator picks such a t_{j}. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, t_{1}, t_{2}\right)$.

In an infinite game, Duplicator wins.
Fact
If Duplicator has a winning strategy then for all φ,

$$
\mathfrak{F}_{1}, V_{1}, s_{1} \models \text { LFC } \varphi \quad \text { iff } \quad \mathfrak{F}_{2}, V_{2}, s_{2} \models_{\text {LFC }} \varphi .
$$

$\mathrm{M} \not \perp \mathrm{LFC}$

We find a pair of models M can distinguish that LFC cannot.
$\mathrm{M} \not \leq \mathrm{LFC}$

We find a pair of models M can distinguish that LFC cannot.

$\mathrm{M} \not \leq \mathrm{LFC}$

We find a pair of models M can distinguish that LFC cannot.

$\mathrm{M} \not \perp \mathrm{LFC}$

We find a pair of models M can distinguish that LFC cannot.

$\mathrm{M} \not \leq \mathrm{LFC}$

We find a pair of models M can distinguish that LFC cannot.

$\mathrm{M} \not \approx \mathrm{LFC}$

We find a pair of models M can distinguish that LFC cannot.

$\mathfrak{G}_{1}, \emptyset, s \models_{\mathrm{M}} \upharpoonright(\downarrow$
$\mathfrak{G}_{2}, \emptyset, t \neq_{\mathrm{M}} \upharpoonright \diamond \measuredangle$

$\mathrm{M} \not \approx \mathrm{LFC}$ (cont.)

Duplicator has a winning strategy in LFC

- s and t have the same valuation.
- Every node has a neighbour.
- For every node spoiler picks, there is an unvisited node with the same valuation.
$\mathrm{M} \not \leq \mathrm{LFC}$ (cont.)
$-\mathfrak{G}_{1}, \emptyset, s=_{\mathrm{M}} \mathfrak{r} \diamond \mathbb{k}$ and $\mathfrak{G}_{2}, \emptyset, t \nexists_{\mathrm{M}} \upharpoonright(\diamond(\mathbb{}$
$\mathrm{M} \not \leq \mathrm{LFC}$ (cont.)
$-\mathfrak{G}_{1}, \emptyset, s=_{\mathrm{M}} \upharpoonright\left\ulcorner\diamond \mathbb{k}\right.$ and $\mathfrak{G}_{2}, \emptyset, t \nexists_{\mathrm{M}} \upharpoonright \diamond(\mathbb{})$
- For every $\varphi, \mathfrak{G}_{1}, s=\operatorname{LFC} \varphi$ iff $\mathfrak{G}_{2}, t \models \operatorname{LFC} \varphi$

$\mathrm{M} \not \leq \mathrm{LFC}$ (cont.)

$-\mathfrak{G}_{1}, \emptyset, s=_{\mathrm{M}}\left(\left\ulcorner\diamond \mathbb{k}\right.\right.$ and $\mathfrak{G}_{2}, \emptyset, t \nexists_{\mathrm{M}} \upharpoonright \diamond(\mathrm{k}$

- For every $\varphi, \mathfrak{G}_{1}, s \models$ LFC φ iff $\mathfrak{G}_{2}, t \models \operatorname{LFC} \varphi$
- M M LFC

Definition (\preceq)
$\mathrm{A} \preceq \mathrm{B}$ if for every pair of models $\mathfrak{M}_{1}, \mathfrak{M}_{2}$, if there is $\varphi \in \mathcal{L}_{\mathrm{A}}$ such that $\mathfrak{M}_{1}=_{\mathrm{A}} \varphi$ and $\mathfrak{M}_{2} \not \vDash_{\mathrm{A}} \varphi$ then there is $\psi \in \mathcal{L}_{\mathrm{B}}$ such that $\mathfrak{M}_{1} \models_{\mathrm{B}} \psi$ and $\mathfrak{M}_{2} \mid \neq \mathrm{B} \psi$.
$\mathrm{M} \not \leq \mathrm{LFC}$ (cont.)

- For every $\varphi, \mathfrak{G}_{1}, s \models \operatorname{LFC} \varphi$ iff $\mathfrak{G}_{2}, t \models \operatorname{LFC} \varphi$
- M M LFC
- $\mathrm{M} \not \leq \mathrm{LFC}$

$\mathrm{M} \not \leq \mathrm{LFC}$ (cont.)

- For every $\varphi, \mathfrak{G}_{1}, s \models \operatorname{LFC} \varphi$ iff $\mathfrak{G}_{2}, t \models \operatorname{LFC} \varphi$
- M M LFC
- $\mathrm{M} \not \leq \mathrm{LFC}$

What about finite models?

Restricted EF Games for LFC

$E F_{R}\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}\right)$

- If $V_{1}\left(s_{1}\right) \neq V_{2}\left(s_{2}\right)$ then Spoiler wins.
- Else if both s_{1} and s_{2} have no neighbours then Duplicator wins.
- Else Spoiler chooses one of the following two moves:

1. Spoiler picks $A \subseteq$ Prop. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}^{s_{1}}, V_{2}^{s_{A}}, s_{1}, s_{2}\right)$.
2. The following occur in order:
2.1 Spoiler chooses $i \in\{1,2\}$ (j is the other)
2.2 Spoiler chooses $t_{i} \in W_{i}$ such that $R_{i} s_{i} t_{i}$.
2.3 If there is no t_{j} with $R_{j} s_{j} t_{j}$, Spoiler wins. Otherwise, Duplicator picks such a t_{j}. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, t_{1}, t_{2}\right)$.

In an infinite game, Duplicator wins.

Restricted EF Games for LFC

$E F_{R}\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}, B \subseteq\right.$ Prop

- If $V_{1}\left(s_{1}\right) \neq V_{2}\left(s_{2}\right)$ then Spoiler wins.
- Else if both s_{1} and s_{2} have no neighbours then Duplicator wins.
- Else Spoiler chooses one of the following two moves:

1. Spoiler picks $A \subseteq$ Prop. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}^{s_{1}}, V_{2}^{s_{A}}, s_{1}, s_{2}\right)$.
2. The following occur in order:
2.1 Spoiler chooses $i \in\{1,2\}$ (j is the other)
2.2 Spoiler chooses $t_{i} \in W_{i}$ such that $R_{i} s_{i} t_{i}$.
2.3 If there is no t_{j} with $R_{j} s_{j} t_{j}$, Spoiler wins. Otherwise, Duplicator picks such a t_{j}. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, t_{1}, t_{2}\right)$.

In an infinite game, Duplicator wins.

Restricted EF Games for LFC

$E F_{R}\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}, B, n\right)$

- If $V_{1}\left(s_{1}\right) \neq V_{2}\left(s_{2}\right)$ then Spoiler wins.
- Else if both s_{1} and s_{2} have no neighbours then Duplicator wins.
- Else Spoiler chooses one of the following two moves:

1. Spoiler picks $A \subseteq$ Prop. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}^{s_{1}}, V_{2}^{s_{A}}, s_{1}, s_{2}\right)$.
2. The following occur in order:
2.1 Spoiler chooses $i \in\{1,2\}$ (j is the other)
2.2 Spoiler chooses $t_{i} \in W_{i}$ such that $R_{i} s_{i} t_{i}$.
2.3 If there is no t_{j} with $R_{j} s_{j} t_{j}$, Spoiler wins. Otherwise, Duplicator picks such a t_{j}. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, t_{1}, t_{2}\right)$.

In an infinite game, Duplicator wins.

Restricted EF Games for LFC

$E F_{R}\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}, B, n\right)$

- If $V_{1}\left(s_{1}\right) \neq V_{2}\left(s_{2}\right)$ then Spoiler wins.
- Else if both s_{1} and s_{2} have no neighbours then Duplicator wins.
- Else Spoiler chooses one of the following two moves:

1. Spoiler picks $A \subseteq B$. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}^{s_{1}}, V_{2}^{s_{2}}, s_{1}, s_{2}\right)$.
2. The following occur in order:
2.1 Spoiler chooses $i \in\{1,2\}$ (j is the other)
2.2 Spoiler chooses $t_{i} \in W_{i}$ such that $R_{i} s_{i} t_{i}$.
2.3 If there is no t_{j} with $R_{j} s_{j} t_{j}$, Spoiler wins. Otherwise, Duplicator picks such a t_{j}. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, t_{1}, t_{2}\right)$.

In an infinite game, Duplicator wins.

Restricted EF Games for LFC

$E F_{R}\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}, B, n\right)$

- If $V_{1}\left(s_{1}\right) \neq V_{2}\left(s_{2}\right)$ then Spoiler wins.
- Else if both s_{1} and s_{2} have no neighbours then Duplicator wins.
- Else Spoiler chooses one of the following two moves:

1. Spoiler picks $A \subseteq B$. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}^{s_{1}}, V_{2}^{s_{2}}, s_{1}, s_{2}\right)$.
2. The following occur in order:
2.1 Spoiler chooses $i \in\{1,2\}$ (j is the other)
2.2 Spoiler chooses $t_{i} \in W_{i}$ such that $R_{i} s_{i} t_{i}$.
2.3 If there is no t_{j} with $R_{j} s_{j} t_{j}$, Spoiler wins. Otherwise, Duplicator picks such a t_{j}. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, t_{1}, t_{2}\right)$.

If Spoiler does not win in n rounds, Duplicator wins.

Restricted EF Games for LFC

$E F_{R}\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}, B, n\right)$

- If $V_{1}\left(s_{1}\right) \neq V_{2}\left(s_{2}\right)$ then Spoiler wins.
- Else if both s_{1} and s_{2} have no neighbours then Duplicator wins.
- Else Spoiler chooses one of the following two moves:

1. Spoiler picks $A \subseteq B$. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}^{s_{1}}, V_{2}^{s_{A}}, s_{1}, s_{2}\right)$.
2. The following occur in order:
2.1 Spoiler chooses $i \in\{1,2\}$ (j is the other)
2.2 Spoiler chooses $t_{i} \in W_{i}$ such that $R_{i} s_{i} t_{i}$.
2.3 If there is no t_{j} with $R_{j} s_{j} t_{j}$, Spoiler wins. Otherwise, Duplicator picks such a t_{j}. We play $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, t_{1}, t_{2}\right)$.

If Spoiler does not win in n rounds, Duplicator wins.
Fact
If Duplicator has a winning strategy, $\mathrm{MD}(\varphi) \leq n$ and $\operatorname{At}(\varphi) \subseteq B$,

$$
\mathfrak{F}_{1}, V_{1}, s_{1} \models \text { LFC } \varphi \quad \text { iff } \quad \mathfrak{F}_{2}, V_{2}, s_{2} \models \text { LFC } \varphi .
$$

$\mathrm{M} \not \leq$ LFC on finite models
Suppose $T: \mathcal{L}_{\mathrm{M}} \rightarrow \mathcal{L}_{L F C}$, and $\psi=T(\mathbb{C} \diamond \mathbb{k})$.

$\mathrm{M} \not \leq \mathrm{LFC}$ on finite models

Suppose $T: \mathcal{L}_{M} \rightarrow \mathcal{L}_{L F C}$, and $\psi=T(\mathbb{C} \diamond(\mathbb{k})$. Let $B=\operatorname{At}(\psi)$ and $n=\operatorname{MD}(\psi)$.
$\mathrm{M} \not \leq \mathrm{LFC}$ on finite models
Suppose $T: \mathcal{L}_{\mathrm{M}} \rightarrow \mathcal{L}_{L F C}$, and $\psi=T(\mathbb{C} \diamond \mathbb{K})$.
Let $B=\operatorname{At}(\psi)$ and $n=\operatorname{MD}(\psi)$.

$\mathrm{M} \not \leq \mathrm{LFC}$ on finite models

Suppose $T: \mathcal{L}_{\mathrm{M}} \rightarrow \mathcal{L}_{L F C}$, and $\psi=T(\mathbb{C} \diamond \mathbb{K})$.
Let $B=\operatorname{At}(\psi)$ and $n=\operatorname{MD}(\psi)$.

- Duplicator has the same winning strategy as before in $E F_{R}\left(\mathfrak{G}_{1}, \mathfrak{G}_{2}, V_{1}, V_{2}, s, t, B, n\right)$.

$\mathrm{M} \not \leq \mathrm{LFC}$ on finite models (cont.)

- For any translation T, we can construct a pair $\mathfrak{G}_{1}, \mathfrak{G}_{2}$ such that

1. $\mathfrak{G}_{1}, \emptyset, s \models_{M} \mathfrak{r} \diamond \mathbb{k}$
2. $\mathfrak{G}_{2}, \emptyset, t \nexists_{\mathrm{M}} \mathbb{(} \diamond \mathrm{k}$
3. $\mathfrak{G}_{1}, s \models$ LFC $T(\mathbb{C} \diamond \mathbb{k})$ iff $\mathfrak{G}_{2}, t \models$ LFC $T(\mathbb{C} \diamond(\mathbb{k})$

$\mathrm{M} \not \leq \mathrm{LFC}$ on finite models (cont.)

- For any translation T, we can construct a pair $\mathfrak{G}_{1}, \mathfrak{G}_{2}$ such that

```
1. \(\mathfrak{G}_{1}, \emptyset, s \models_{\mathrm{M}} \upharpoonright(\stackrel{k}{ }\)
2. \(\mathfrak{G}_{2}, \emptyset, t \nexists_{\mathrm{M}} \mathbb{(} \diamond \mathrm{k}\)
3. \(\mathfrak{G}_{1}, s \models\) LFC \(T(\mathbb{C} \diamond \mathbb{k})\) iff \(\mathfrak{G}_{2}, t \models\) LFC \(T(\mathbb{C} \diamond(\mathbb{k})\)
```

- So no translation satisfies the definition of \leq.

Definition (\leq)
$\mathrm{A} \leq \mathrm{B}$ if there is a $\mathfrak{T}: \mathcal{L}_{\mathrm{A}} \rightarrow \mathcal{L}_{\mathrm{B}}$ such that for all models \mathfrak{M},

$$
\mathfrak{M} \models_{\mathrm{A}} \varphi \quad \text { iff } \quad \mathfrak{M} \models_{\mathrm{B}} \mathfrak{T}(\varphi) .
$$

$\mathrm{M} \not \leq \mathrm{LFC}$ on finite models (cont.)

- For any translation T, we can construct a pair $\mathfrak{G}_{1}, \mathfrak{G}_{2}$ such that

1. $\mathfrak{G}_{1}, \emptyset, s \models_{M} \upharpoonright\ulcorner\diamond \mathbb{k}$
2. $\mathfrak{G}_{2}, \emptyset, t \nexists_{\mathrm{M}} \upharpoonright(\stackrel{\mathrm{K}}{ }$
3. $\mathfrak{G}_{1}, s \models$ LFC $T\left(\mathbb{C} \diamond(\mathbb{k})\right.$ iff $\mathfrak{G}_{2}, t \models$ LFC $T(\mathbb{C} \diamond(k)$

- So no translation satisfies the definition of \leq.
- So $\mathrm{M} \not \leq \mathrm{LFC}$ on finite models.

BUT!

Fix n and $B \subsetneq$ Prop. Take $q \notin B$.

$\mathfrak{G}_{1}, s \models \mathrm{LFC} \bigcirc \diamond \boldsymbol{q}$

$\mathfrak{G}_{2}, t \not \vDash \operatorname{LFC} \bigcirc \diamond \boldsymbol{q}$

BUT!

Fix n and $B \subsetneq$ Prop. Take $q \notin B$.

- So LFC can distinguish all our countermodels.

What do EF Games for LFC correspond to?

What do EF Games for LFC correspond to?

Definition (Strongly connected component)
Let $\mathfrak{F}=(W, R)$ and $W \in A$. SCC (s) is the smallest subgraph $\mathfrak{G}=\left(W^{\prime}, R^{\prime}\right)$ of \mathfrak{F} such that if there is a path in \mathfrak{F} from s to t, and from t to s, then $t \in W^{\prime}$.

What do EF Games for LFC correspond to?

Definition (Strongly connected component)
Let $\mathfrak{F}=(W, R)$ and $W \in A$. $\operatorname{SCC}(s)$ is the smallest subgraph $\mathfrak{G}=\left(W^{\prime}, R^{\prime}\right)$ of \mathfrak{F} such that if there is a path in \mathfrak{F} from s to t, and from t to s, then $t \in W^{\prime}$.

Definition (Isobisimulation)
Let $\mathfrak{M}_{1}=\left(W_{1}, R_{1}, V_{1}\right)$ and $\mathfrak{M}_{2}=\left(W_{2}, R_{2}, V_{2}\right)$. A relation
$Z \subseteq W_{1} \times W_{2}$ is an isobisimulation if the following clauses hold:
Non-empty $Z \neq \emptyset$
Agree If $s_{1} Z s_{2}$ then $V_{1}\left(s_{1}\right)=V_{2}\left(s_{2}\right)$.
Zig If $s_{1} Z s_{2}$ and $R_{1} s_{1} t_{1}$ then there is t_{2} with $R_{2} s_{2} t_{2}$.
Zag If $s_{1} Z s_{2}$ and $R_{2} s_{2} t_{2}$ then there is t_{1} with $R_{1} s_{1} t_{1}$.
Isomorphism If $s_{1} Z s_{2}$ then there is an isomorphism $f: \operatorname{SCC}\left(s_{1}\right) \rightarrow \operatorname{SCC}\left(s_{2}\right)$ such that $f\left(s_{1}\right)=s_{2}$.

Isobisimulation and LFC

Theorem
For finite pointed models \mathfrak{M}_{1}, s_{1} and \mathfrak{M}_{2}, s_{2}, the following are equivalent:

1. There is an isobisimulation Z with $s_{1} Z s_{2}$.
2. Duplicator has a winning strategy in $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}\right)$.
3. For every $\varphi \in \mathcal{L}_{L F C}$ we have $\mathfrak{M}_{1}, s_{1} \models \varphi$ iff $\mathfrak{M}_{2}, s_{2} \models \varphi$.

Isobisimulation and LFC

Theorem
For finite pointed models \mathfrak{M}_{1}, s_{1} and \mathfrak{M}_{2}, s_{2}, the following are equivalent:

1. There is an isobisimulation Z with $s_{1} Z s_{2}$.
2. Duplicator has a winning strategy in $\operatorname{EF}\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}\right)$.
3. For every $\varphi \in \mathcal{L}_{L F C}$ we have $\mathfrak{M}_{1}, s_{1} \models \varphi$ iff $\mathfrak{M}_{2}, s_{2} \models \varphi$.

Proof idea.

Isobisimulation and LFC

Theorem
For finite pointed models \mathfrak{M}_{1}, s_{1} and \mathfrak{M}_{2}, s_{2}, the following are equivalent:

1. There is an isobisimulation Z with $s_{1} Z s_{2}$.
2. Duplicator has a winning strategy in $\operatorname{EF}\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}\right)$.
3. For every $\varphi \in \mathcal{L}_{L F C}$ we have $\mathfrak{M}_{1}, s_{1} \models \varphi$ iff $\mathfrak{M}_{2}, s_{2} \models \varphi$.

Proof idea.

- $2 \Rightarrow 3$ was mentioned above.

Isobisimulation and LFC

Theorem
For finite pointed models \mathfrak{M}_{1}, s_{1} and \mathfrak{M}_{2}, s_{2}, the following are equivalent:

1. There is an isobisimulation Z with $s_{1} Z s_{2}$.
2. Duplicator has a winning strategy in $\operatorname{EF}\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}\right)$.
3. For every $\varphi \in \mathcal{L}_{L F C}$ we have $\mathfrak{M}_{1}, s_{1} \models \varphi$ iff $\mathfrak{M}_{2}, s_{2} \models \varphi$. Proof idea.

- $2 \Rightarrow 3$ was mentioned above.
- $3 \Rightarrow 2$ is by standard techniques: if Spoiler has a winning strategy, we use it to construct a distinguishing formula.

Isobisimulation and LFC

Theorem
For finite pointed models \mathfrak{M}_{1}, s_{1} and \mathfrak{M}_{2}, s_{2}, the following are equivalent:

1. There is an isobisimulation Z with $s_{1} Z s_{2}$.
2. Duplicator has a winning strategy in $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}\right)$.
3. For every $\varphi \in \mathcal{L}_{L F C}$ we have $\mathfrak{M}_{1}, s_{1} \models \varphi$ iff $\mathfrak{M}_{2}, s_{2} \models \varphi$.

Proof idea.

- $2 \Rightarrow 3$ was mentioned above.
- $3 \Rightarrow 2$ is by standard techniques: if Spoiler has a winning strategy, we use it to construct a distinguishing formula.
- $1 \Rightarrow 2$: Duplicator follows the isobisimulation. Spoiler's valuation-change move only affects repeat visits - when we're guaranteed to be in an isomorphic component.

Isobisimulation and LFC

Theorem
For finite pointed models \mathfrak{M}_{1}, s_{1} and \mathfrak{M}_{2}, s_{2}, the following are equivalent:

1. There is an isobisimulation Z with $s_{1} Z s_{2}$.
2. Duplicator has a winning strategy in $E F\left(\mathfrak{F}_{1}, \mathfrak{F}_{2}, V_{1}, V_{2}, s_{1}, s_{2}\right)$.
3. For every $\varphi \in \mathcal{L}_{L F C}$ we have $\mathfrak{M}_{1}, s_{1} \models \varphi$ iff $\mathfrak{M}_{2}, s_{2} \models \varphi$.

Proof idea.

- $2 \Rightarrow 3$ was mentioned above.
- $3 \Rightarrow 2$ is by standard techniques: if Spoiler has a winning strategy, we use it to construct a distinguishing formula.
- $1 \Rightarrow 2$: Duplicator follows the isobisimulation. Spoiler's valuation-change move only affects repeat visits - when we're guaranteed to be in an isomorphic component.
- $2 \Rightarrow$ 1: Use Duplicator's strategy to build an isobisimulation. Key idea: Spoiler can label all the vertices of a SCC.

$\mathrm{M} \preceq \mathrm{LFC}$ on finite models

Theorem
Let \mathfrak{M}_{1}, s_{1} and \mathfrak{M}_{2}, s_{2} be finite pointed models, and let Z be an isobisimulation with $s_{1} Z s_{2}$. Then for all $\varphi \in \mathcal{L}_{M}$,

$$
\mathfrak{M}_{1}, \emptyset, s_{1} \models \mathrm{M} \varphi \quad \text { iff } \quad \mathfrak{M}_{2}, \emptyset, s_{2} \models_{\mathrm{M}} \varphi .
$$

$\mathrm{M} \preceq \mathrm{LFC}$ on finite models

Theorem
Let \mathfrak{M}_{1}, s_{1} and \mathfrak{M}_{2}, s_{2} be finite pointed models, and let Z be an isobisimulation with $s_{1} Z s_{2}$. Then for all $\varphi \in \mathcal{L}_{\mathrm{M}}$,

$$
\mathfrak{M}_{1}, \emptyset, s_{1} \models \mathrm{M} \varphi \quad \text { iff } \quad \mathfrak{M}_{2}, \emptyset, s_{2} \models_{\mathrm{M}} \varphi .
$$

Proof.

Similar to that for LFC. Duplicator's strategy is just to follow the isobisimulation.

$\mathrm{M} \preceq \mathrm{LFC}$ on finite models

Theorem
Let \mathfrak{M}_{1}, s_{1} and \mathfrak{M}_{2}, s_{2} be finite pointed models, and let Z be an isobisimulation with $s_{1} Z s_{2}$. Then for all $\varphi \in \mathcal{L}_{M}$,

$$
\mathfrak{M}_{1}, \emptyset, s_{1} \models \mathrm{M} \varphi \quad \text { iff } \quad \mathfrak{M}_{2}, \emptyset, s_{2} \models \mathrm{M} \varphi .
$$

Proof.

Similar to that for LFC. Duplicator's strategy is just to follow the isobisimulation.

Corollary
$\mathrm{M} \preceq$ LFC on finite models.

LFC $\not \leq \mathrm{M}$ on (in)finite models

Is M more expressive than LFC?

LFC $\not \leq \mathrm{M}$ on (in)finite models

Is M more expressive than LFC?
Theorem
LFC $\not \leq \mathrm{M}$.
Proof.
Adaptation of proof in Areces et al. (2011). Uses infinite models.

LFC $\not \leq \mathrm{M}$ on (in)finite models

Is M more expressive than LFC?
Theorem
LFC $\not \leq \mathrm{M}$.
Proof.
Adaptation of proof in Areces et al. (2011). Uses infinite models.

Theorem
LFC $\not \leq \mathrm{M}$ for finite models.
Proof.
Adaptation of proof in Areces et al. (2011).

LFC $\not \leq \mathrm{M}$ on (in)finite models

Is M more expressive than LFC?
Theorem
LFC $\not \leq \mathrm{M}$.
Proof.
Adaptation of proof in Areces et al. (2011). Uses infinite models.

Theorem
LFC $\not \leq \mathrm{M}$ for finite models.
Proof.
Adaptation of proof in Areces et al. (2011).

$$
\text { LFC } \stackrel{?}{\preceq} M
$$

Open questions

Expressive Power

- What is the relationship between M and isobisimulation?
- Is LFC $\preceq \mathrm{M}$?
- What other situations do \leq and \preceq give different judgements?
- What is the relationship between other logics (e.g. Hybrid logic) and isobisimulation?
- Restricted tree model property? Decidability for classes of models?

General

- What weakenings of LFC will make it decidable?
- What is the exact relationship between LFC and Nash equilibria for BNGs? Can we say the logic of Nash equilibria is undecidable?

Thank you

Related Work

- Propositional formulae, with agents controlling a subset of the atomic variables: Coalition Logics of Propositional Control (van der Hoek and Wooldridge 2005), Boolean Games (Harrenstein et al. 2001).

Related Work

- Propositional formulae, with agents controlling a subset of the atomic variables: Coalition Logics of Propositional Control (van der Hoek and Wooldridge 2005), Boolean Games (Harrenstein et al. 2001).
- Network structure, changes to global truth value of proposition: Public Announcement Logic.

Related Work

- Propositional formulae, with agents controlling a subset of the atomic variables: Coalition Logics of Propositional Control (van der Hoek and Wooldridge 2005), Boolean Games (Harrenstein et al. 2001).
- Network structure, changes to global truth value of proposition: Public Announcement Logic.
- PDL variant where atomic programs are propositional assignments: Dynamic Logic of Propositional Assignments (Balbiani, Herzig, and Troquard 2013)

Related Work

- Propositional formulae, with agents controlling a subset of the atomic variables: Coalition Logics of Propositional Control (van der Hoek and Wooldridge 2005), Boolean Games (Harrenstein et al. 2001).
- Network structure, changes to global truth value of proposition: Public Announcement Logic.
- PDL variant where atomic programs are propositional assignments: Dynamic Logic of Propositional Assignments (Balbiani, Herzig, and Troquard 2013)
- PDL with local and global assignments to propositional variables: PDL+GLA (Tiomkin and Makowsky 1985)

Areces, Carlos et al. (June 2011). "The Expressive Power of Memory Logics". In: The Review of Symbolic Logic 4.02, pp. 290-318.
R Balbiani, Philippe, Andreas Herzig, and Nicolas Troquard (2013). "Dynamic Logic of Propositional Assignments: A Well-Behaved Variant of PDL". In: Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science. LICS '13. Washington, DC, USA: IEEE Computer Society, pp. 143-152. ISBN: 978-0-7695-5020-6.
Harrenstein, Paul et al. (2001). "Boolean Games". In: Proceedings of the 8th Conference on Theoretical Aspects of Rationality and Knowledge. Morgan Kaufmann Publishers Inc., pp. 287-298.
(Mera, Sergio Fernando (2009). "Modal Memory Logics". PhD Thesis. Buenos Aires: Universidad de Buenos Aires. 165 pp.
Tiomkin, M. L. and J. A. Makowsky (Jan. 1, 1985). "Propositional Dynamic Logic with Local Assignment". In: Theoretical Computer Science 36, pp. 71-87.
国 Van der Hoek, Wiebe and Michael Wooldridge (May 2005). "On the Logic of Cooperation and Propositional Control". In:
Artificial Intelligence 164 1-2 nn 81-119

$$
\left.\models \square^{n} p \leftrightarrow\left(\bigcirc \square^{n} p \vee\left(\bigcirc\left(p \leftrightarrow \square^{n} p\right) \wedge p\right)\right)\right)
$$

